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Abstract

We propose a novel approach to deal with the problem of indeterminacy in Linear Ra-

tional Expectations models. The method consists of augmenting the original state space with

a set of auxiliary exogenous equations to provide the adequate number of explosive roots in

presence of indeterminacy. The solution in this expanded state space, if it exists, is always

determinate, and is identical to the indeterminate solution of the original model. The pro-

posed approach accommodates determinacy and any degree of indeterminacy, and it can be

implemented even when the boundaries of the determinacy region are unknown. Thus, the

researcher can estimate the model using standard packages without restricting the estimates

to the determinacy region. We apply our method to estimate the New-Keynesian model with

rational bubbles by Galí (2017) over the period 1982:Q4 until 2007:Q3. We find that the data

support the presence of two degrees of indeterminacy, implying that the central bank was not

reacting strongly enough to the bubble component.
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1 Introduction

Sunspot shocks and multiple equilibria have been at the center of economic thinking at least

since the seminal work of Cass and Shell (1983), Farmer and Guo (1994) and Farmer and Guo

(1995). The zero lower bound has brought renovated interest to the problem of indeterminacy

(Aruoba et al. (2018)). Furthermore, in many of the Linear Rational Expectation (LRE) models

used to study the properties of the macroeconomy the possibility of multiple equilibria arises for

some parameter values, but not for others. This paper proposes a novel approach to solve LRE

models that easily accommodates both the case of determinacy and indeterminacy. As a result,

the proposed methodology can be used to easily estimate a LRE model that could potentially

be characterized by multiplicity of equilibria. Our approach is implementable even when the

analytic conditions for determinacy or the degrees of indeterminacy are unknown. Importantly,

the proposed method can be easily implemented to study indeterminacy in standard software

packages, such as Dynare and Sims’(2001) code Gensys.

To understand how our approach works, it is useful to recall the conditions for determinacy

as stated by Blanchard and Kahn (1980). Indeterminacy arises when the parameter values

are such that the number of explosive roots is smaller than the number of non-predetermined

variables. The key idea behind our methodology consists of augmenting the original model by

appending additional autoregressive processes that can be used to provide the missing explosive

roots. The innovations of these exogenous processes are assumed to be linear combinations of

a subset of the forecast errors associated with the expectational variables of the model and a

newly defined vector of sunspot shocks. When the Blanchard-Kahn condition for determinacy

is satisfied, all the roots of the auxiliary autoregressive processes are assumed to be within the

unit circle and the auxiliary process is irrelevant for the dynamics of the model. The law of

motion for the endogenous variables is in this case equivalent to the solution obtained using

standard solution algorithms (King and Watson (1998), Klein (2000), Sims (2001)). When the

model is indeterminate, the appropriate number of appended autoregressive processes is assumed

to be explosive. For example, if there are two degrees of indeterminacy, two of the auxiliary

processes are assumed to be explosive. The solution that we obtain for the endogenous variables

is equivalent to the one obtained with the methodology of Lubik and Schorfheide (2003) or,

equivalently, Farmer et al. (2015).

Our methodology can be used with standard estimation packages such as Dynare. The solution

or estimation under indeterminacy is not generally implementable in standard packages. Our

method solves this problem by expanding the state space and making sure that in this expan-

ded state space the conditions for determinacy always hold. Thus, our approach allows the

researcher to solve and estimate a model under indeterminacy using standard software packages.
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Our methodology also simplifies the common approach used to deal with indeterminacy. The

common procedure requires the researcher to solve the model differently depending on the area

of the parameter space that is being studied. Under indeterminacy, existing methods require

to construct the solution ex-post following the seminal contribution of Lubik and Schorfheide

(2003) or to rewrite the model based on the existing degree of indeterminacy (Farmer et al.

(2015)). In itself, this is not an insurmountable task, but it implies that the researcher interested

in a structural estimation of the model would need to write the estimation codes and not just

the solution codes. Our proposed method only requires the researcher to augment the original

system of equations to reflect the maximum degree of indeterminacy and can therefore be used

with no modification of the solution approach. Finally, we show that our approach can facilitate

the transition between the determinacy and indeterminacy regions of the parameter space. This

method works because our auxiliary processes can be used to make more likely a draw that

crosses the threshold of determinacy and to keep track of the distance from such threshold. This

idea is particularly easy to implement when the threshold of the determinacy region is known.

Our work is related to the vast literature that studies the role of indeterminacy in explaining the

evolution of the macroeconomy. Prominent examples in the monetary policy literature include

the work of Clarida et al. (2000) and Kerr and King (1996), that study the possibility of mul-

tiple equilibria as a result of violations of the Taylor Principle in New-Keynesian (NK) models.

Applying the methods developed in Lubik and Schorfheide (2003) to the canonical NK model,

Lubik and Schorfheide (2004) test for indeterminacy in U.S. monetary policy. Using a calibrated

small-scale model, Coibon and Gorodnichenko (2011) find that the reduction of the target infla-

tion rate in the United States also played a key role in explaining the Great Moderation, and

Arias et al. (2017) support this finding in the context of a medium-scale model à la Christiano

et al. (2005). In a similar spirit, Arias (2013) studies the dynamic properties of medium-sized

NK models with trend inflation. More recently, Aruoba et al. (2018) study inflation dynamics

at the Zero Lower Bound (ZLB) and during an exit from the ZLB.

The paper closest to our is Farmer et al. (2015). As explained above, the main difference

between the two approaches is that our method accommodates the case of both determinacy and

indeterminacy while considering the same augmented system of equations. Instead, the method

proposed by Farmer et al. (2015) requires us to rewrite the model based on the existing degree of

indeterminacy. With respect to Lubik and Schorfheide (2003), the main novelty of our approach

is to provide a unified approach to study determinacy and indeterminacy of different degrees.1

Finally, we deliberately use Dynare in all the examples presented in this paper to show that

our method can be combined with standard packages. However, our solution method can be

1Ascari et al. (forthcoming) allow for temporarily unstable paths, while we require all solutions to be stationary,
in line with previous contributions in the literature.
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combined with more sophisticated estimation techniques such as the ones developed in Herbst

and Schorfheide (2015).

To show how to use our methodology in practice, we estimate the small-scale NK model of

Galí (2017) using Bayesian techniques using U.S. data over the period 1982:Q4 until 2007:Q3.

Galí’s model extends a conventional NK model to allow for the existence of rational bubbles. An

interesting aspect of the model is that it displays up to two degrees of indeterminacy for realistic

parameter values. We find that the data support the version of the model with two degrees of

indeterminacy, implying that the central bank was not reacting strongly enough to the bubble

component.

The remainder of the paper is organized as follows. Section 2 builds the intuition by using a

univariate example in the spirit of Lubik and Schorfheide (2004). Section 3 describes the meth-

odology and shows that the augmented representation of the LRE model delivers solutions which

under determinacy are equivalent to those obtained using standard solution algorithms, and un-

der indeterminacy to those obtained using the methodology provided by Lubik and Schorfheide

(2003, 2004) and Farmer et al. (2015). In Section 4, we provide guidance on how to properly

implement our methodology, and suggestions on how it could be used to improve the effi ciency

of existing estimation algorithms. In Section 5, we apply our theoretical results to estimate NK

model with rational bubbles of Galí (2017) using Bayesian techniques. We present our conclusions

in Section 6.

2 Building the intuition

Before presenting the theoretical results of the paper, this section builds the intuition behind

our approach by considering a univariate example similar to the one proposed in Lubik and

Schorfheide (2004). While Section 2.1 explains our approach from an analytical perspective,

Section 2.2 addresses questions which could arise at the time of its practical implementation.

2.1 A useful example

Consider a classical monetary model characterized by the Fisher equation

it = Et(πt+1) + rt, (1)

and the simple Taylor rule

it = φππt, (2)
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where it denotes the nominal interest rate, πt represents the inflation rate, and φπ > 0 is a

parameter controlling the response of the nominal interest to inflation. We assume that the real

interest rate rt is given and described by a mean-zero Gaussian i.i.d. shock.2 To properly specify

the model, we also define the one-step ahead forecast error associated with the expectational

variable, πt, as

ηt ≡ πt − Et−1(πt). (3)

Combining (1) and (2), we obtain the univariate model

Et(πt+1) = φππt − rt. (4)

First, we consider the case φπ > 1. Rewriting equation (4), it is clear that this case is associated

with the determinate solution,

πt =
1

φπ
Et(πt+1) +

1

φπ
rt

=
1

φπ
rt. (5)

where the last equality is obtained by solving the equation forward and recalling the assump-

tions on rt. The strong response of the monetary authority to changes in inflation (φπ > 1)

guarantees that inflation is pinned down as a function of the exogenous real interest rt. From a

technical perspective, when φπ > 1 the Blanchard-Kahn condition for uniqueness of a solution is

satisfied: The number of explosive roots matches the number of expectational variables, that in

this univariate case is one.

The second case corresponds to φπ ≤ 1. The solution is obtained by combining (4) with (3), and

it corresponds to any process that takes the following form

πt = φππt−1 − rt−1 + ηt. (6)

The previous equation also holds under determinacy, but in that case the central bank’s behavior

induces restrictions on the expectation error ηt. Instead, when the monetary authority does not

respond aggressively enough to changes in inflation (φπ ≤ 1), there are multiple solutions for the

inflation rate, πt, each indexed by the expectations that the representative agent holds about

future inflation, ηt. Equivalently, the solution to the univariate model is indeterminate: The

2 In the classical monetary model, the real interest rate results from the equilibrium in labor and goods market,
and it depends on the technology shocks. We are considering an exogenous process for the technology shocks, and
therefore we take the process for the real interest rate as given.
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Blanchard-Kahn solution is not satisfied as there is no explosive root to match the number of

expectational variables.

The simple model considered here can be solved pencil and paper. However, when considering

richer models with multiple endogenous variables, indeterminacy represents a challenge from

a methodological and computational perspective. Standard software packages such as Dynare

do not allow for indeterminacy. Of course, a researcher could in principle code an estimation

algorithm herself, following the methods outlined in Lubik and Schorfheide (2004). However,

this approach requires a substantial amount of time and technical skills. The researcher would

need to write a code that not only finds the solution, but also implements the estimation al-

gorithm. Hence, the result is that in practice most of the papers simply rule out the possibility

of indeterminacy, even if the model at hand could in principle allow for such a feature.

The problem that a researcher faces when solving a LRE model under indeterminacy using

standard solution algorithms can be easily understood based on the example provided above.

Under determinacy, the model already has a suffi cient number of unstable roots to match the

number of expectational variables. However, under indeterminacy, the model is missing one

explosive root. Thus, we propose to augment the original state space of the model by appending

an independent process which could be either stable or unstable.

The key insight consists of choosing this auxiliary processes in a way to deliver the correct

solution. When the original model is determinate, the auxiliary process must be stationary so

that also the augmented representation satisfies the Blanchard-Kahn condition. In this case, the

auxiliary process represents a separate block that does not affect the law of motion of the model

variables. When the model is indeterminate, the additional process should however be explosive

so that the Blanchard-Kahn condition is satisfied for the augmented system, even if not for the

original model. By choosing the auxiliary process in the appropriate way, the solution under

determinacy in this expanded state space corresponds to the solution under indeterminacy under

the original state space. In what follows, we apply this intuition to the example considered above.

In Section 3, we show that the approach can be easily extended to richer models to accommodate

any degree of indeterminacy.

Our methodology proposes to solve an augmented system of equations which can be dealt with

by using standard solution algorithms such as Sims (2001) under both determinacy and inde-

terminacy. Consider the following augmented system{
Et(πt+1) = φππt − rt,
ωt =

(
1
α

)
ωt−1 − νt + ηt,

(7)

where ωt is an independent autoregressive process, α ∈ [0, 2] and νt is a newly defined mean-zero
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Blanchard-Kahn condition in the augmented representation
Unstable Roots B-K condition in Solution

augmented model (7)

Determinacy φπ > 1
in original model (4)
1
α< 1 1 Satisfied

{
πt = 1

φπ
rt, ωt = αωt−1 − νt + εt

}
1
α> 1 2 Not satisfied -

Indeterminacy φπ ≤ 1
in original model (4)
1
α< 1 0 Not satisfied -
1
α> 1 1 Satisfied {πt = φππt−1 − rt−1 + ηt, ωt = 0}

Table 1: The table reports the regions of the parameter space for which the Blanchard-Kahn
condition in the augmented representation is satisfied, even when the original model is indeterm-
inate.

sunspot shock with standard deviation σν .

Table 1 summarizes the intuition behind our approach. When the original LRE model in (4) is

determinate, φπ > 1, the Blanchard-Kahn condition for the augmented representation in (7) is

satisfied when 1/α < 1. Indeed, for φπ > 1 the original model has the same number of unstable

roots as the number of expectational variables. Our methodology thus suggests to append a

stable autoregressive process such that 1/α < 1. In this case, the method of Sims (2001) delivers

the same solution for the endogenous variable πt as in equation (5) and for the autoregressive

process ωt. Importantly, ωt is an independent autoregressive process, and its dynamics do not

impact the endogenous variable πt.

Considering the case of indeterminacy (i.e. φπ ≤ 1), the original model has one expectational

variable, but no unstable root, thus violating the Blanchard-Kahn condition. By appending

an explosive autoregressive process, the augmented representation that we propose satisfies the

Blanchard-Kahn condition and delivers the same solution as the one resulting from the methodo-

logy of Lubik and Schorfheide (2003) or Farmer et al. (2015) described by equation (6). Moreover,

stability imposes conditions such that ωt is always equal to zero at any time t, and even in this

case, the solution for the endogenous variable does not depend on the appended autoregressive

process.

Summarizing, the choice of the coeffi cient 1
α should be made as follows. For values of φπ greater

than 1, the Blanchard-Kahn condition for the augmented representation is satisfied for values

of α greater than 1. Conversely, under indeterminacy (i.e. φπ ≤ 1) the condition is satisfied
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when α is smaller than 1. The choice of parametrizing the auxiliary process with 1/α instead

of α induces a positive correlation between φπ and α that facilitates the implementation of our

method when estimating a model.

Finally, note that under both determinacy and indeterminacy, the exact value of 1/α is irrelevant

for the law of motion of πt. Under determinacy, the auxiliary process ωt is stationary, but

its evolution does not affect the law of motion of the model variables. Under indeterminacy,

ωt is always equal to zero. Thus, the introduction of the auxiliary process does not affect the

properties of the solution in the two cases. However, this process serves two important purposes:

It provides the correct number of explosive roots under indeterminacy and creates a mapping

between the sunspot shock and the expectation errors. As we will see in Section 3, this result

can be generalized and applies to more complicated models with potentially multiple degrees of

indeterminacy.

2.2 Choosing α

Before presenting detailed suggestions for the practical implementation of our method in Section

4, it is useful to provide the intuition for the choice of the parameter α in the context of the

simple model presented above. First of all, from the discussion above, it should be clear that

what matters is only if this parameter is smaller or larger than 1. Its exact value does not affect

the solution for πt. Thus, if a researcher wants to solve the model only under indeterminacy

(determinacy), it can simply fix the parameter to a value smaller (larger) than 1. In this way,

standard solution algorithms proceed to solve the model in the augmented state space only when

the model under the original state space is characterized by indeterminacy (determinacy).

However, a researcher might want to allow for both determinacy and indeterminacy when solving

the model. We consider the following two cases: (1) The analytic condition defining the region

of determinacy are known; (2) The analytic condition defining the region of determinacy are

unknown. We consider the two cases separately.

We first consider the case in which the researcher is able to analytically derive the condition

which defines when the model is determinate or indeterminate. For the example considered in this

section, this case corresponds to knowing that when φπ ≤ 1 the model in (4) is indeterminate. We

thus suggest to write the parameter α as a function of the parameter φπ so that the augmented

representation in (7) always satisfies the Blanchard-Kahn condition. In this example, we set

α ≡ φπ. When the original model is determinate (φπ > 1), the appended autoregressive process

is stationary because 1/α < 1. If the original model is indeterminate (φπ ≤ 1), the coeffi cient

1/α is greater than 1 and the appended process is therefore explosive. Hence, when the region of

determinacy is known, the researcher can easily choose α such that the augmented representation
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always delivers a solution under both determinacy and indeterminacy. Note that in this case α

is a transformation of φπ and effectively no auxiliary extra parameters are introduced.

There are however instances in which the researcher does not know the exact properties of the

determinacy region. In this case, the researcher can start with an arbitrary value of α for a

given sets of parameters θ. Suppose that the researcher starts with a value less than 1 and finds

that the model is indeterminate for the given set of parameters θ. Then, the researcher can just

change α to a value larger than 1, for example α′ = 1/α. A similar logic applies to the case

with multiple degrees of indeterminacy that we discuss below: If the solution algorithm returns

a solution with m degrees of indeterminacy, m explosive auxiliary processes are necessary.

3 Methodology

We now present the main contribution of the paper generalizing the intuition provided above to

a multivariate model with potentially multiple degrees of indeterminacy. Given the general class

of LRE models described in Sims (2001), this paper proposes an augmented representation which

embeds the solution for the model under both determinacy and indeterminacy. In particular,

the augmented representation of the LRE model delivers solutions which under determinacy

are equivalent to those obtained using standard solution algorithms, and under indeterminacy

to those obtained using the methodology provided by Lubik and Schorfheide (2003, 2004) or

equivalently Farmer et al. (2015). In the following, we generalize the intuition built in the

previous section. Consider the following LRE model

Γ0(θ)Xt = Γ1(θ)Xt−1 + Ψ(θ)εt + Π(θ)ηt, (8)

where Xt ∈ Rk is a vector of endogenous variables, εt ∈ R` is a vector of exogenous shocks,

ηt ∈ Rp collects the p one-step ahead forecast errors for the expectational variables of the system
and θ ∈ Θ is a vector of parameters. The matrices Γ0 and Γ1 are of dimension k × k, possibly
singular, and the matrices Ψ and Π are of dimension k × ` and k × p, respectively. Also, we
assume

Et−1(εt) = 0, and Et−1(ηt) = 0.

We also define the `× ` matrix Ωεε,

Ωεε ≡ Et−1(εtε
′
t),

which represents the covariance matrix of the exogenous shocks.
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Consider a model whose maximum degree of indeterminacy is denoted by m.3 The proposed

methodology appends to the original LRE model in (8) the following system of m equations

ωt = Φωt−1 + νt − ηf,t, Φ ≡


1
α1

0
. . .

0 1
αm

 (9)

where the vector ηf,t is a subset of the endogenous shocks and the vectors
{
ωt, νt, ηf,t

}
are of

dimension m× 1. The equations in (9) are autoregressive processes whose innovations are linear

combinations of a vector of newly defined sunspot shocks, νt, and a subset of forecast errors,

ηf,t, where Et−1(νt) = Et−1(ηf,t) = 0. As we will show below, the choice of which expectational

errors to include in (9) does not affect the solution.

The intuition behind the proposed methodology works as in the example considered in the previ-

ous section. Let m∗ (θ) denote the actual degree of indeterminacy associated with the parameter

vector θ. Under indeterminacy the Blanchard-Kahn condition for the original LRE model in (8)

is not satisfied. Given that the system is characterized by m∗ (θ) degrees of indeterminacy, it

is necessary to introduce m∗ (θ) explosive roots to solve the model using standard solution al-

gorithms. In this case, m∗ (θ) of the diagonal elements of the matrix Φ are assumed to be outside

the unit circle (in absolute value), and the augmented representation is therefore determinate

because the Blanchard-Kahn condition is now satisfied. On the other hand, under determinacy

the (absolute value of the) diagonal elements of the matrix Φ are assumed to be all inside the

unit circle, as the number of explosive roots of the original LRE model in (8) already equals the

number of expectational variables in the model (m∗ (θ) = 0). Also, in this case the augmented

representation is determinate due to the stability of the appended auxiliary processes. Import-

antly, as shown for the univariate example in Section 2, the block structure of the proposed

methodology guarantees that the autoregressive process, ωt, never affects the solution for the

endogenous variables, Xt.

Denoting the newly defined vector of endogenous variables X̂t ≡ (Xt, ωt)
′ and the newly defined

vector of exogenous shocks ε̂t ≡ (εt, νt)
′, the system in (8) and (9) can be written as

Γ̂0X̂t = Γ̂1X̂t−1 + Ψ̂ε̂t + Π̂ηt, (10)

where
3Denoting by n the minimum number of unstable roots of a LRE model and p the number of one-step ahead

forecast errors, the maximum degrees of indeterminacy are defined as m ≡ p− n. When the minimum number of
unstable roots of a model is unknown, then m coincides with number of expectational variables p. This represents
the maximum degree of indeterminacy in any model with p expectational variables.
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Γ̂0 ≡
[

Γ0(θ) 0

0 I

]
, Γ̂1 ≡

[
Γ1(θ) 0

0 Φ

]
, Ψ̂ ≡

[
Ψ(θ) 0

0 I

]
, Π̂ ≡

[
Πn(θ) Πf (θ)

0 −I

]
,

and without loss of generality the matrix Π in (8) is partitioned as Π = [Πn Πf ], where the

matrices Πn and Πf are respectively of dimension k × (p−m) and k ×m.4

Section 3.1 and 3.2 show that the augmented representation of the LRE model delivers solutions

which under determinacy are equivalent to those obtained using standard solution algorithms,

and under indeterminacy to those obtained using the methodology provided by Lubik and Schorf-

heide (2003, 2004) and Farmer et al. (2015). In order to simplify the exposition, when analyzing

the case of indeterminacy we assume, without loss of generality, m∗(θ) = m. As it will become

clear, the case of m∗(θ) < m is a special case of what we present below.

3.1 Equivalence under determinacy

This section considers the case in which the original LRE is determinate, and shows the equi-

valence of the solution obtained using the proposed augmented representation with the one from

the standard solution method described in Sims (2001).

3.1.1 Canonical solution

Consider the LRE model in (8) and reported in the following equation

Γ0
k×k

Xt
k×1

= Γ1
k×k

Xt−1
k×1

+ Ψ
k×l

εt
l×1

+ Π
k×p

ηt
p×1

. (11)

The method described in Sims (2001) delivers a solution, if it exists, by following four steps.

First, Sims (2001) shows how to write the model in the form

SZ ′Xt = TZ ′Xt−1 +QΨεt +QΠηt, (12)

where Γ0 = Q′SZ ′ and Γ1 = Q′TZ ′ result from the QZ decomposition of {Γ0,Γ1}, and the k× k
matrices Q and Z are orthonormal, upper triangular and possibly complex. Also, the diagonal

4Suppose that Π
k×3
≡
[

Π1
k×1

Π2
k×1

Π3
k×1

]
. The proposed augmented representation would therefore allow for the

following three possible alternatives, Π̂1 ≡
[
Π1 Π2 Π3

0 0 −1

]
, Π̂2 ≡

[
Π1 Π2 Π3

0 −1 0

]
and Π̂3 ≡

[
Π1 Π2 Π3

−1 0 0

]
. In

Appendix B, we show with an analytic example that the alternative representations have a unique mapping that
ensures the equivalence among each of them.
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elements of S and T contain the generalized eigenvalues of {Γ0,Γ1}.

Second, given that the QZ decomposition is not unique, Sims’algorithm chooses a decomposition

that orders the equations so that the absolute values of the ratios of the generalized eigenvalues

are placed in an increasing order, that is

|tjj | / |sjj | ≥ |tii| / |sii| for j > i.

The algorithm then partitions the matrices S, T , Q and Z as

S =

[
S11 S12

0 S22

]
, T =

[
T11 T12

0 T22

]
, Z ′ =

[
Z1

Z2

]
, Q =

[
Q1

Q2

]
,

where the first block corresponds to the system of equations for which |tjj | / |sjj | ≤ 1 and the

second block groups the equations which are characterized by explosive roots, |tjj | / |sjj | > 1 .

The third step imposes conditions on the second, explosive block to guarantee the existence of

at least one bounded solution. Defining the transformed variables

ξt ≡ Z ′Xt =


ξ1,t

(k−n)×1

ξ2,t
n×1

 ,
where n is the number of explosive roots, and the transformed parameters

Ψ̃ ≡ Q′Ψ, and Π̃ ≡ Q′Π,

the second block can be written as

ξ2,t = S−1
22 T22ξ2,t−1 + S−1

22 (Ψ̃2εt + Π̃2ηt).

As this system of equations contains the explosive roots of the original system, then a bounded

solution, if it exists, will set

ξ2,0
n×1

= 0 (13)

Ψ̃2
n×`

εt
`×1

+ Π̃2
n×p

ηt
p×1

= 0, (14)

where n also denotes the number of equations in (14). A necessary condition for the existence

of a solution requires that the number of unstable roots (n) equals the number of expectational
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variables (p). In this section, we are considering the solution under determinacy, and this guaran-

tees that there are no degrees of indeterminacy m∗(θ) = 0. The suffi cient condition then requires

that the columns of the matrix Π̃2 are linearly independent so that there is at least one bounded

solution. In that case, the matrix Π̃2 is a square, non-singular matrix and equation (14) imposes

linear restrictions on the forecast errors, ηt, as a function of the fundamental shocks, εt,

ηt = −Π̃−1
2 Ψ̃2εt. (15)

The fourth and last step finds the solution for the endogenous variables, Xt, by combining the

restrictions in (13) and (15) with the system of stable equations in the first block,

ξ1,t = S−1
11 T11ξ1,t−1 + S−1

11 (Ψ̃1εt + Π̃1ηt)

= S−1
11 T11ξ1,t−1 + S−1

11

(
Ψ̃1 − Π̃1Π̃−1

2 Ψ̃2

)
εt (16)

Using the algorithm by Sims (2001), we can describe the solution under determinacy of the LRE

model in (11) with equations (13), (15), and (16).

3.1.2 Augmented representation

We now consider the methodology proposed in this paper, and we augment the LRE model in

(11) with the following system of m equations

ωt = Φωt−1 + νt − ηf,t, Φ ≡


1
α1

0
. . .

0 1
αm


where Φ is a m × m diagonal matrix. As the original model in (11) is determinate, then we

assume that all the diagonal elements αi belong to the interval [1, 2]. Therefore, we are append-

ing a system of stable equations, and we show that the solution for the endogenous variables,

Xt, is equivalent to the one found in Section 3.1.1. Defining the augmented vector of endogen-

ous variables, X̂t ≡ (Xt, ωt)
′ and the augmented vector of exogenous shocks ε̂t ≡ (εt, νt)

′, the

representation that we propose takes the form

Γ̂0X̂t = Γ̂1X̂t−1 + Ψ̂ε̂t + Π̂ηt, (17)
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where

Γ̂0 ≡
[

Γ0 0

0 I

]
, Γ̂1 ≡

[
Γ1 0

0 Φ

]
, Ψ̂ ≡

[
Ψ 0

0 I

]
, Π̂ ≡

[
Πn Πf

0 −I

]
,

and without loss of generality the matrix Π is partitioned as Π = [Πn Πf ], where the matrices

Πn and Πf are respectively of dimension k × (p−m) and k ×m.

We can find a solution to the augmented representation in (17) by using Sims’algorithm. Sim-

ilarly to the previous section, we follow the four steps which describe the algorithm. First, the

solution algorithm performs the QZ decomposition of the matrices {Γ̂0, Γ̂1} and the augmented
representation takes the form

ŜẐ ′X̂t = T̂ Ẑ ′X̂t−1 + Q̂Ψ̂ε̂t + Q̂Π̂ηt, (18)

where Γ̂0 = Q̂′ŜẐ ′ and Γ̂1 = Q̂′T̂ Ẑ ′ result from the QZ decomposition of {Γ̂0, Γ̂1}, and

Ŝ =

S11 0 S12

0 I 0

0 0 S22

 , T̂ =

T11 0 T12

0 Φ 0

0 0 T22

 , ẐT =

Z1 0

0 I

Z2 0

 , Q̂ =

Q1 0

0 I

Q2 0

 .
Importantly, note that the inner matrices of {Ŝ, T̂ , Ẑ, Q̂} are the same as those which define the
matrices {S, T, Z,Q} found in the previous section using the canonical solution method.

Second, the algorithm chooses a QZ decomposition which groups the equations in a stable and

an explosive block. Because this section assumes that the original model is determinate and that

the diagonal elements of the matrix Φ are within the unit circle, the explosive block corresponds

to the third system of equations in (18) which is characterized by explosive roots. Recalling the

definition of the matrices Ψ̂ and Π̂, the system of equations in the third block is

ξ2,t = S−1
22 T22ξ2,t−1 + S−1

22 (Ψ̃2εt + Π̃2ηt). (19)

The third step imposes conditions to guarantee the existence of a bounded solution. However,

the explosive block in (19) is identical to the system of equations found in the previous section.

Therefore, the algorithm imposes the same restrictions to guarantee the existence of a bounded

solution, that is

ξ2,0 = 0 (20)

and as found earlier

ηt = −Π̃−1
2 Ψ̃2εt. (21)
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Finally, the last step combines these restrictions with the system of equations in the stable block

which corresponds to the first and second systems of equations in (18),

ξ1,t = S−1
11 T11ξ1,t−1 + S−1

11

(
Ψ̃1 − Π̃1Π̃−1

2 Ψ̃2

)
εt, (22)

ωt = Φωt−1 + νt − ηf,t. (23)

Recalling that ξt ≡ Z ′Xt, the solution in (20)∼(23) obtained for the augmented representation
of the LRE model delivers the same solution for the endogenous variables of interest, Xt, found

in the previous section and defined in equations (13), (15), and (16).

Two remarks should be made when comparing the two solutions. First, as shown in (21), the

forecast errors are only a function of the exogenous shocks εt, and not of the newly defined

sunspot shocks, νt. It is therefore clear that the endogenous variables, Xt, of the original LRE

model do not respond to sunspot shocks either, as expected under determinacy. Second, (22) and

(23) indicate that under determinacy the appended system of equations constitutes a separate

block, which does not affect the dynamics of the endogenous variables, Xt. Thus, the likelihood

associated with a vector of observables Zt that represents a linear transformation of the variables

in Xt is invariant with respect to the method used to compute the solution. This statement holds

because the latent processes do not affect Zt.

3.2 Equivalence under indeterminacy

This section shows the equivalence of the solutions obtained for a LREmodel under indeterminacy

using the proposed augmented representation and the methodology of Lubik and Schorfheide

(2003, 2004).

3.2.1 Lubik and Schorfheide (2003)

As in Section 3.1, we consider the LRE model in (11) and reported below as (24)

Γ0Xt = Γ1Xt−1 + Ψεt + Πηt. (24)

In this section we assume that the model is indeterminate, and we present the method used by

Lubik and Schorfheide (2003). The authors implement the first two steps of the algorithm by Sims

(2001) and described in Section 3.1.1.5 They proceed by first applying the QZ decomposition

to the LRE model in (24) and then ordering the resulting system of equations in a stable and

5 It is relevant to mention that in this section the matrices obtained from the QZ decomposition and the
ordering of the equations into a stable and an explosive block differ from those in Section 3.1 both in terms of their
dimensionality and the elements constituing them. However, we opted to use the same notation for simplicity.
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an explosive block as defined in equation (12). However, their approach differs in the third step

when the algorithm imposes restrictions to guarantee the existence of a bounded solution. In

particular, the restrictions in (13) and (14) reported below as (25) and (26) require that

ξ2,0
n×1

= 0, (25)

Ψ̃2
n×`

εt
`×1

+ Π̃2
n×p

ηt
p×1

= 0. (26)

Nevertheless, it is clear that the system of equation in (26) is indeterminate as the number

of forecast errors exceeds the number of explosive roots (p > n). Equivalently, there are less

equations (n) than the number of variables to solve for (p). To characterize the full set of

solutions to equation (26), Lubik and Schorfheide (2003) decompose the matrix Π̃2 using the

following singular value decomposition

Π̃2
n×p

≡ U
n×n

[
D11
n×n

0
n×m

]
V ′
p×p

,

where m represents the degrees of indeterminacy. Given the partition V
p×p
≡
[
V1
p×n

V2
p×m

]
,

equation (26) can be written as

D−1
11

n×n
U ′
n×n

Ψ̃2
n×`

εt
`×1

+ V ′1
n×p

ηt
p×1

= 0. (27)

Given that the system is indeterminate, Lubik and Schorfheide (2003) append additional m

equations,

M̃
m×`

εt
`×1

+ Mζ
m×m

ζt
m×1

= V ′2
m×p

ηt
p×1

. (28)

The m × 1 vector ζt is a set of sunspot shocks that is assumed to have mean zero, covariance

matrix Ωζζ and to be uncorrelated with the fundamental shocks, εt, that is

E [ζt] = 0, E
[
ζtε
′
t

]
= 0, E

[
ζtζ
′
t

]
= Ωζζ .

The matrix M̃ captures the correlation of the forecast errors, ηt, with fundamentals, εt, and Lubik

and Schorfheide (2003) choose the normalization Mζ = Im. The reason to append the system of

equations in (28) to the equations in (27) is to exploit the properties of the orthonormal matrix

V . Premultiplying the system by the matrix V and recalling that V ∗ V ′ = I, the expectational
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errors can be written as a function of the fundamental shocks, εt, and the sunspot shocks, ζt,

ηt
p×1

=

(
−V1
p×n

D−1
11

n×n
U ′1
n×n

Ψ̃2
n×`

+ V2
p×m

M̃
m×`

)
εt
`×1

+ V2
p×m

ζt
m×1

.

More compactly,

ηt
p×1

=

(
V1
p×n

N
n×`

+ V2
p×m

M̃
m×`

)
εt
`×1

+ V2
p×m

ζt
m×1

, (29)

where

N
n×`
≡ −D−1

11
n×n

U ′1
n×n

Ψ̃2.
n×`

is a function of the parameters of the model. Given the restriction in (25) and (29), the fourth

step in the algorithm combines these equations with the system of stable equations in the first

block as in Section 3.1.1,

ξ1,t = S−1
11 T11ξ1,t−1 + S−1

11 (Ψ̃1εt + Π̃1ηt)

= S−1
11 T11ξ1,t−1 + S−1

11

(
Ψ̃1 + Π̃1V1N + Π̃1V2M̃

)
εt + S−1

11

(
Π̃1V2

)
ζt. (30)

Using the method in Lubik and Schorfheide (2003), we can describe the solution for the original

LRE model under indeterminacy with equations (25), (29) and (30).

3.2.2 Augmented representation

We now consider the augmented representation as in (17) and reported below as

Γ̂0X̂t = Γ̂1X̂t−1 + Ψ̂ε̂t + Π̂ηt, (31)

where X̂t ≡ (Xt, ωt)
′, ε̂t ≡ (εt, νt)

′ and

Γ̂0 ≡
[

Γ0 0

0 I

]
, Γ̂1 ≡

[
Γ1 0

0 Φ

]
, Ψ̂ ≡

[
Ψ 0

0 I

]
, Π̂ ≡

[
Πn Πf

0 −I

]
.

where the matrix Π is partitioned as Π = [Πn Πf ] without loss of generality.

The novelty of our approach is that, given our representation, we can easily obtain the solution by

using Sims’algorithm even when the original LRE is assumed to be indeterminate. It is enough

to assume that the auxiliary processes ωt are characterized by explosive roots, or equivalently

that the diagonal elements of the matrix Φ are outside the unit circle. This approach guarantees

that the Blanchard-Kahn condition for the augmented representation is satisfied and, given
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the analytic form that we propose for the auxiliary processes, we show that the solution for

the endogenous variables of interest, Xt, is equivalent to the method of Lubik and Schorfheide

(2003).

To show this result, we simply apply the four steps of the algorithm described in Sims (2001) to

the proposed augmented representation. First, the QZ decomposition of (31) takes the form

ŜẐ ′X̂t = T̂ Ẑ ′X̂t−1 + Q̂Ψ̂ε̂t + Q̂Π̂ηt, (32)

where Γ̂0 = Q̂′ŜẐ ′ and Γ̂1 = Q̂′T̂ Ẑ ′ result from the QZ decomposition6 of {Γ̂0, Γ̂1} and

Ŝ =

S11 S12 0

0 S22 0

0 0 I

 , T̂ =

T11 T12 0

0 T22 0

0 0 Φ

 , ẐT =

Z1 0

Z2 0

0 I

 , Q̂ =

Q1 0

Q2 0

0 I

 . (33)
Note that in the expression above the auxiliary matrix Φ is in the lower (explosive) block because

of our simplifying assumption that m∗ (θ) = m. When m∗ (θ) < m, part of the matrix Φ would

belong in the stable block. As mentioned above, we made this simplifying assumption without

loss of generality and only to simplify the exposition.

Second, the QZ decomposition chosen by the algorithm groups the explosive dynamics of the

model in the second and third system of equations in (32), which are reported below as (34)

[
S22 0

0 I

][
ξ2

ωt

]
=

[
T22 0

0 Φ

][
ξ2,t−1

ωt−1

]
+

[
Q2 0

0 I

](
Ψ̂ε̂t + Π̂ηt

)
. (34)

In the third step, the following restrictions are imposed,

ξ2,0
n×1

= 0, (35)

ω0
m×1

= 0, (36)[
Q2 0

0 I

](
Ψ̂ε̂t + Π̂ηt

)
= 0. (37)

6Note that the inner matrices of {Ŝ, T̂ , ẐT , Q̂} are the same as those which define the matrices {S, T, ZT , Q}
found from the QZ decomposition using the methodology of Lubik and Schorfheide (2003).
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Recalling the definition of Ψ̂ and Π̂ in (31), then equation (37) can be written as[
Ψ̃2 0

0 I

]
︸ ︷︷ ︸
p×(`+m)

ε̂t
(`+m)×1

+

[
Π̃n,2 Π̃f,2

0 −I

]
︸ ︷︷ ︸

p×p

ηt
p×1

= 0, (38)

where Ψ̃ ≡ Q′Ψ and Π̃ ≡ Q′Π. Equation (38) shows transparently how the explosive auxiliary

process that we append in our augmented representation helps to solve the original LRE model

under indeterminacy. The system of equations in (38) is determinate, as the number of equations

defined by the explosive roots of the system equals the number of expectational errors of the

model. Thus, the necessary condition for the existence of a bounded solution for the augmented

representation is satisfied. Assuming that the columns of the matrix associated with the vector

of non-fundamental shocks, ηt, are linearly independent, we can impose linear restrictions on the

forecast errors as a function of the augmented vector of exogenous shocks ε̂t ≡ (εt, νt)
′,

ηt = −
[

Π̃−1
n,2Ψ̃2 Π̃−1

n,2Π̃f,2

0 −I

]
ε̂t.

More compactly,

ηt = C1εt + C2νt, (39)

where C1 ≡ −
[

Π̃−1
n,2Ψ̃2

0

]
and C2 ≡ −

[
Π̃−1
n,2Π̃f,2

−I

]
are a function of the structural parameters of

the model.

The last step of Sims’algorithm combines the restrictions in (35), (36) and (39) with the sta-

tionary block derived from the QZ decomposition in (32),

ξ1,t = S−1
11 T11ξ1,t−1 + S−1

11 (Ψ̃1εt + Π̃1ηt)

= S−1
11 T11ξ1,t−1 + S−1

11

(
Ψ̃1 + Π̃1C1

)
εt + S−1

11

(
Π̃1C2

)
νt. (40)

3.2.3 Indeterminate equilibria and equivalent characterizations

The indeterminate equilibria found using the methodology of Lubik and Schorfheide (2003)

are parametrized by two sets of parameters. The first set is defined by θ1 ∈ Θ1, where

θ1 ≡ vec(Γ0,Γ1,Ψ,Ωεε)
′ is a vector of structural parameters of the model as well as the co-

variance matrix of the exogenous shocks. The second set corresponds to θ2 ∈ Θ2, where

θ2 ≡ vec
(

Ωζζ , M̃
)′
is a parameter vector related to the additional equations introduced in
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(28) and reported below as (41),

M̃
m×`

εt
`×1

+ Mζ
m×m

ζt
m×1

= V ′2
m×p

ηt
p×1

. (41)

Given the normalization Mζ = I chosen by Lubik and Schorfheide (2004), equation (41) intro-

duces m × (m + 1)/2 parameters associated with the covariance matrix of the sunspot shocks,

Ωζζ , and additional m× ` parameters of the matrix M̃ that is related to the covariances between

ηt and εt. In Appendix A, we show how the normalization chosen by Lubik and Schorfheide

(2004) maps one-to-one into a specific covariance matrix for the exogenous shocks under the

methodology proposed in this paper.

The characterization of a Lubik-Schorfheide equilibrium is a vector θLS ∈ ΘLS , where ΘLS is

defined as

ΘLS ≡ {Θ1,Θ2} .

Similarly, the full characterization of the solutions under indeterminacy using the proposed aug-

mented representation is parametrized by the set of parameters θ1 ∈ Θ1 common between the

two methodologies, and the set of additional parameters θ3 ∈ Θ3 , where θ3 ≡ vec(Ωνν ,Ωνε)
′.

Using our approach, we also introduce m× (m+ 1)/2 parameters associated with the covariance

matrix of the sunspot shocks, Ωνν , and m × ` parameters of the covariances, Ωνε, between the

sunspot shock νt and the exogenous shocks εt. A Bianchi-Nicolò equilibrium is characterized by

a parameter vector θBN ∈ ΘBN , where ΘBN is defined as

ΘBN ≡ {Θ1,Θ3} .

The following theorem establishes the equivalence between the characterizations of indeterminate

equilibria obtained by using the methodology in Lubik and Schorfheide (2003) and the proposed

augmented representation.

Theorem 1 Let θLS and θBN be two alternative parametrizations of an indeterminate equilib-

rium of the model

Γ0Xt = Γ1Xt−1 + Ψεt + Πηt.

For every BN equilibrium, parametrized by θBN , there exists a unique matrix M̃ and a unique

matrix Ωζζ such that θ2 = vec(Ωζζ , M̃)′, and {θ1, θ2} ∈ ΘLS defines an equivalent LS equilibrium.

Conversely, for every LS equilibrium, parametrized by θLS, there is a unique matrix Ωνν and a

unique covariance matrix Ωνε such that θ3 = vec(Ωνν ,Ωνε)
′, and {θ1, θ3} ∈ ΘBN defines an

equivalent BN equilibrium.
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Proof. See Appendix A.

In the paper Farmer et al. (2015), the authors also show that their characterization of indeterm-

inate equilibria is equivalent to Lubik and Schorfheide (2003). Therefore, the following corollary

holds.

Corollary 2 Given a parametrization θBN of a Bianchi-Nicolò indeterminate equilibrium, there

exists a unique mapping into the parametrization of an indeterminate equilibrium for Farmer et

al. (2015), and vice-versa.

Moreover, the following two considerations support Corollary 3 below, which describes a relevant

result on the likelihood function of the augmented representation. First, as emphasized in this

section, the solution of the model in the augmented state space has a block structure which

ensures that the evolution of the endogenous variables inXt is not a function of the autoregressive

processes, ωt. Second, note that the appended autoregressive processes in ωt only serves the

purpose of providing the necessary explosive roots under indeterminacy and creating a mapping

from the sunspot shocks to the expectational errors. These auxiliary processes are not mapped

into the observable variables through the measurement equation. These two considerations imply

that the parameters of the matrix Φ introduced with the augmented representation are not

identified within certain parameter region. The algorithm only requires them to be inside or

outside the unit circle. Corollary 3 then follows.7

Corollary 3 Conditional on the existence of a solution, the likelihood function associated with
the newly defined vector of endogenous variables, X̂t, does not depend on the additional para-

meters included in the augmented representation, Φ, and is equivalent to the likelihood function

associated with the endogenous variables, Xt.

While Section 3.1 shows that the augmented representation of the LRE model delivers solutions

which under determinacy are equivalent to those obtained using standard solution algorithms,

Theorem 1 proves that under indeterminacy the solutions of our methodology are equivalent

to those obtained using Lubik and Schorfheide (2003, 2004) and Farmer et al. (2015). This

theoretical result is crucial for the application of our methodology to the New-Keynesian (NK)

model with rational bubbles of Galí (2017) in Section 5.

7Notice that Corollary 3 holds when the augmented representation has a unique solution. This happens in two
cases. First, values of the structural parameters θ which guarantee determinacy in the original LRE model should
be combined with values for αi in the matrix Φ whose absolute value lies within the unit circle. Second, values
of the structural parameters θ for which the original model is indeterminate should be combined with (absolute)
values of αi outside the unit circle.

21



4 Estimation

In this section, we present some suggestions for the practical implementation of our method with

an emphasis on the use of standard software packages such as Dynare. We consider both the

model and the data that Lubik and Schorfheide (2004) use to test for indeterminacy in U.S.

monetary policy, as it is possible to derive analytically the boundary of the determinacy region

and to estimate the model under determinacy and indeterminacy. The model is described by

equations (42)∼(47) below and consists of a dynamic IS curve,

yt = Et (yt+1)− τ (it − Et (πt+1)) + gt, (42)

a NK Phillips curve,

πt = βEt (πt+1) + κ (yt − zt) , (43)

and a Taylor rule,

it = ρiit−1 + (1− ρi) (ψ1πt + ψ2 (yt − zt)) + εi,t. (44)

The demand shock, gt, and the supply shock, zt, follow univariate AR(1) processes

gt = ρggt−1 + εg,t, (45)

zt = ρzzt−1 + εz,t, (46)

where the standard deviations of the fundamental shocks εg,t, εz,t and εi,t are denoted by σg, σz
and σi, respectively. As in Lubik and Schorfheide (2004), we allow for the correlation between

demand and supply shocks, ρgz, to be nonzero. The rational expectation forecast errors are

defined as

ηy,t ≡ yt − Et−1 [yt] , ηπ,t ≡ πt − Et−1 [πt] . (47)

We define the vector of endogenous variables as Xt ≡ (yt, πt, it, Et (yt+1) , Et (πt+1) , gt, zt)
′, the

vectors of fundamental shocks and expectation errors,

εt = (εi,t, εg,t, εz,t)
′ , ηt =

(
ηy,t, ηπ,t

)′
and the vector of parameters θ =

(
ψ1, ψ2, ρi, β, κ, τ , ρg, ρz, σg, σz, σi, ρgz

)′
. We can therefore

represent the model as in the following equation,

Γ0(θ)Xt = Γ1(θ)Xt−1 + Ψ(θ)εt + Π(θ)ηt. (48)
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The LRE model in (48) is determinate when the following analytic condition is satisfied,

|ψ∗| ≡
∣∣∣∣ψ1 +

(1− β)

κ
ψ2

∣∣∣∣ > 1. (49)

When the model is indeterminate, 0 < |ψ∗| ≤ 1, the system is characterized by one degree of

indeterminacy (m = 1) because there are two expectational variables (Et (yt+1) and Et (πt+1))

and at most one root outside the unit circle. Thus, to implement our methodology we need to

augment the original state space of the model in (48) with the autoregressive process

ωt =

(
1

α

)
ωt−1 + νt − ηπ,t. (50)

where, without loss of generality, we have parameterized the auxiliary process with respect to

ηπ,t.
8 We then define a new vector of endogenous variables X̂t ≡ (Xt, ωt)

′ and a newly defined

vector of exogenous shocks as ε̂t ≡ (εt, νt)
′ = (εi,t, εg,t, εz,t, νt)

′. The system in (48) and (50) can

now be written as

Γ̂0X̂t = Γ̂1X̂t−1 + Ψ̂ε̂t + Π̂ηt. (51)

As in Lubik and Schorfheide (2004), we estimate the model using Bayesian methods using three

series as observables: The percentage deviations of (log) real GDP per capita from an HP-trend

(yobs,t), the annualized percentage change in the Consumer Price Index for all Urban Consumers

(πobs,t), and the annualized Federal Funds Rate (iobs,t). We focus on the data for the pre-Volcker

period (1960Q1 - 1979Q2) as Lubik and Schorfheide (2004) show that during this period the

monetary authority did not respond aggressively enough to changes in inflation, thus not sup-

pressing self-fulfilling inflation expectations. We repeat the estimation of the model of Lubik and

Schorfheide (2004) by adopting the same prior distributions for the structural parameters. The

Bayesian estimation is conducted using conventional Metropolis-Hastings algorithm in Dynare.

Priors for the auxiliary parameters. As a first step, we discuss how we choose the prior
distribution for the additional parameters introduced under our methodology. Our augmented

representation introduces the vector of parameters α and parametrizes the continuum of equilibria

under indeterminacy by introducing the standard deviation of a sunspot shock and its correlations

with the exogenous shocks.

Regarding the vector of parameters α, we can distinguish three cases. Case 1: When the de-

terminacy threshold is known, then α can be expressed as a function of the other parameters.

8 In Appendix B, we show an analytic example of the unique mapping that exists between the alternative
representations that can be considered using our augmented representation. We therefore ensure that the repres-
entations are equivalent up to a transformation of the correlations between the exogenous shocks and the forecast
error included in the auxiliary process.
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In this case, there is no need to specify a prior on α and the prior probability of determinacy is

given by the prior on the parameter vector θ. Case 2: When the threshold is unknown and the

researcher writes her own code, she can start with all the roots inside the unit circle for α at each

draw of θ and then flip the appropriate number of elements in the vector α. Thus, even in this

case, there is no need to specify a prior on α and the prior probability of indeterminacy depends

on the prior on the parameter vector θ. Case 3: The researcher is using Dynare and the region

of the parameter state is unknown. In this case, we suggest to choose priors that are symmetric

between the two regions, i.e. that attach 50% probability to determinacy, and orthogonal with

respect to the priors on the other parameters.

In what follows, we focus on Case 3 and discuss how to proceed under the assumption that the

researcher does not know the region of determinacy and might be interested in using an estimation

package such as Dynare. For a given draw of the structural parameters, the researcher would like

to make draws of α smaller or greater than 1 with equal probabilities. In this case, the researcher

could use a uniform distribution over the interval [0, 2] or any symmetric interval around 1 as a

prior distribution.9 Note that when the determinacy region is not known, the effi ciency of the

algorithm can be improved when the researcher writes her own estimation/solution algorithm.

We describe how to improve the effi ciency of traditional MCMC algorithms in the subsection

“Effi ciency”below.

The correlations of the sunspot shocks with the exogenous disturbances are crucial parameters

that affect the fit of the model. In line with the theoretical results, a given set of correlations

under the representation that includes the forecast error for the inflation rate has a unique

mapping to (different values of) the correlations in the representation with the forecast errors

for the output gap, and vice versa. Therefore, in order for the two representations to deliver the

same fit to the data, a researcher has to leave the correlations unrestricted. One simple option

is to set a uniform prior distributions over the interval (−1, 1) for the correlations of the sunspot

shocks. This approach guarantees that the fit of the model does not depend on which forecast

error is included in the auxiliary process.10 This is the approach that we follow in the estimation

of the model of Galí (2017) in Section 5.

Lubik and Schorfheide (2004) center the prior distributions for the additional parameters intro-

duced in their representation on values that minimize the distance between the impulse responses

of the model under indeterminacy and determinacy evaluated at the boundary of the region of

9Note that if the researcher writes her own code, the prior distribution does not necessarily have to be continu-
ous. A discrete probability distribution that allows to make draws of α to be either equal 0.5 or 1.5 could also be
specified as a prior.
10Similarly, imposing a zero correlation between the sunspot shock and the exogenous shocks under a given

representation does not map into an assumption of zero correlation under the alternative representations. In this
case, the fit of the model differs across the different specifications.
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determinacy. Thus, they estimate parameters controlling deviations from this centering point.

We showed the mapping between the two representations in Section 3 and we illustrate this

equivalence with an analytical example in Appendix B. Given this equivalence, the priors for the

correlations between sunspot shocks and structural shocks could also be specified in a way to

replicate the approach of Lubik and Schorfheide (2004). Specifically, we could specify a prior on

the auxiliary matrices used in Lubik and Schorfheide (2004) and then map the matrices into the

correlations used in our approach. However, to easily implement our approach using standard

packages, we suggest choosing a flat prior. Thus, we do not center our priors on the impulse

response at the boundary of the region of determinacy, but still cover this case as equally likely

with respect to the others.

Convergence. We are interested in showing that the methodology allows a standard estim-
ation algorithm such as the one implemented in Dynare to travel to the correct region of the

parameter space. At the same time, we also want to emphasize the importance of conducting

standard convergence diagnostics. To achieve these goals, we set the initial parametrization in

the “wrong”region of the parameter space and consider 1,000,000 draws to show that the meth-

odology accommodates the case of determinacy and indeterminacy, as well as to highlight the

importance of checking convergence before interpreting the estimation results. Figure 1 reports

the posterior distribution for the parameter ψ1 and α obtained for an initial parametrization such

that the Taylor Principle holds (i.e. we set ψ1 = 2). At first glance, the posterior distribution

of the parameter ψ1 would appear to be bimodal. This finding is consistent with the fact that

the proposed augmented representation allows the Metropolis-Hastings algorithm to visit both

regions of the parameter space. At the same time, the posterior distribution for the parameter

α is very similar to the prior distribution, which is specified as a uniform distribution over the

interval [0, 2]. Such result conveys the same evidence derived from the posterior for ψ1 because

the algorithm explores both regions by considering draws of α which are within as well as outside

the unit circle.

A researcher should then verify the occurrence of either of the following two circumstances. This

bimodal distribution could arise because the log-likelihood is highly discontinuous between the

two regions. In this case, the algorithm could have jumped towards the region where the peak

of the posterior lies, without having spent a significant time there. In other words, convergence

has not occurred yet. Alternatively, if the log-likelihood function varies smoothly between the

two regions of the parameter space, the posterior distribution plotted in Figure 1 could be the

result of the algorithm traveling across the two regions multiple times.

We therefore recommend the researcher to analyze the draws of the parameter α which have been

accepted during the MCMC algorithm. By inspecting the behavior of the auxiliary parameter

α, a researcher can detect if the algorithm reached convergence or not. We report the draws
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Posterior distribution of parameter ψ1 and α

0 1 2 3
0

1

2

3

4

5

ψ1

0 0 .5 1 1 .5 2
0

0 .5

1

1 .5

α

Figure 1: Initial parametrization ψ1 = 2. The grey line represents the prior distribution and the
black line is the posterior distribution.

that we obtained during our exercise in Figure 2. After approximately 400,000 draws of α in the

region of determinacy (i.e. outside the unit circle), the algorithm jumps to the indeterminate

region and never visits the determinacy region again.

Draws of the parameter α
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Figure 2: Sequence of draws for α given an initial parametrization ψ1 = 2.

Thus, Figure 1 and 2 suggest that the algorithm is in fact able to jump toward the correct region of

the parameter space, but also that convergence has not occurred yet. Therefore, the researcher

should repeat the estimation exercise, increase the number of draws, and make sure that the

parameter α stabilizes on one region of the parameter space. Under different circumstances,
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the researcher could face the second scenario, for which the log-likelihood function transitions

smoothly between the two regions. In this case, the parameter α would repeatedly transition

between the two areas of the parameter space and could be used to infer the probability attached

to determinacy. Below we discuss how our methodology can be used to effi ciently facilitate such

transition.

Only (in)determinacy. In some cases, a researcher might want to estimate the model exclus-
ively under determinacy or exclusively under indeterminacy. Our approach easily accommodates

this need. If the researcher is only interested in the solution under determinacy, the parameter

vector of α should be chosen in a way to guarantee stationarity of the auxiliary process (for

example, fixing all values of the alphas to 2). Furthermore, all parameters that are relevant only

under indeterminacy should be fixed to zero or any other constant, given that they do not affect

the fit of the model under determinacy. If instead the researcher is only interested in estimating

the model under indeterminacy, the parameters of the auxiliary process can be chosen in a way to

guarantee that the correct number of explosive roots are provided. In this case, the parameters

describing the properties of the sunspot disturbances should also be estimated.

Model comparison. A researcher might also be interested in comparing the fit of the model
under determinacy and under indeterminacy. Model comparison can be conducted by using

standard techniques, such as the harmonic mean estimator proposed by Geweke (1999). If the

researcher is interested in comparing the same model under determinacy and under indeterm-

inacy, we recommend the following procedure that adapts the approach used by Lubik and

Schorfheide (2004):

1. Estimate the model under determinacy by fixing the parameter(s) alpha to a value larger

than one in a way that the model is solved only under determinacy. Note that in this case

all parameters that pertain to the solution under indeterminacy, such as the volatility of the

sunspot shocks and its correlations with the exogenous shocks, should be restricted to zero

(or any other constant). This restriction avoids penalizing the model for extra parameters

that do not affect its fit under determinacy.

2. Estimate the model under indeterminacy by fixing the parameter(s) alpha to a value smaller

than one in a way that the model is solved only under indeterminacy. Note that in this

case all parameters that pertain to the solution under indeterminacy, such as the volatility

of the sunspot shocks and its correlations, should be estimated.

3. Use standard methods to compare the fit of the model under determinacy with the fit of

the same model under indeterminacy.

Effi ciency. As mentioned above, our method can also be used to make traditional MCMC
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algorithms more effi cient. We have left the discussion of this point last because, unlike the

procedures described above, it generally requires the researcher to write its own code. The key

idea is that in many cases the auxiliary parameter α can be used to summarize the distance of the

current parameter vector from the threshold separating determinacy and indeterminacy regions.

This approach is substantially easier when the partition of the parameter space is known, as

in Lubik and Schorfheide (2004). However, the idea can be used even when the region of the

parameter space is not known. For the sake of presenting the general idea, we focus on the former

case.

As illustrated above, our method prescribes to set the parameter α to a value smaller than 1 when

the original model presents indeterminacy. Therefore, the value of this auxiliary parameter can

be considered an indicator variable for the presence of indeterminacy in the original model. When

determinacy or indeterminacy depends on a large number of parameters, access to this indicator

variable can facilitate transition between the two regions of the parameter space. To see why,

suppose that indeterminacy depends on k parameters and that the threshold for indeterminacy

is known. Then, we can easily obtain a draw for α and k − 1 of the parameters that control

determinacy, check whether the drawn α implies determinacy or indeterminacy, and, finally,

solve for the k − th parameter. Therefore, the probability of jumping between the two regions
is controlled by a single parameter. The proposal distribution for this parameter can then be

chosen to ensure that once it approaches the threshold, the proposal distribution is such that

a jump is more likely. Instead, in the standard approach the k parameters are drawn without

consideration of how far the current parameter vector is from the threshold separating the two

areas of the parameter space.

There are of course many possible ways to choose the proposal distribution for α in a way

that jumps between the two regions is more likely. One simple way consists of choosing a

mixture of normals and then using a standard Metropolis-Hastings algorithm that corrects for

the asymmetry in the proposal distribution. In what follows, we present this approach in the

context of the model of Lubik and Schorfheide (2004).

Let’s choose α in a way that every draw implies existence and uniqueness of a solution in the

augmented parameter space:

α ≡ ψ1 +
1− β
κ

ψ2

In this case, determinacy depends on four parameters, {ψ1, ψ2, κ, β} . However, we know that

whenever α > 1, these four parameters are such that determinacy holds, while whenever α < 1,

the model is in the indeterminacy region. Thus, we could implement an MCMC algorithm in
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which the proposal distribution draws {α,ψ2, κ, β} and then derives ψ1:

ψ1 = α− 1− β
κ

ψ2.

Let d ≡ α − α = α − 1 be the distance between the current value for α and the boundary

of the determinacy region for this auxiliary parameter, α ≡ 1. Note that when the distance is

negative, α is below the threshold and the model is under indeterminacy. Suppose that we specify

the proposal distribution to be a mixture of normals: One centered on the current parameter

value and one just beyond the threshold of the determinacy region. Specifically, we assume the

following proposal distribution for the proposed draw α̃, given the current value, αn:

α̃ ∼
{
N
(
1− sign (d)µc, σ

2
c

)
with probability w

N
(
αn, σ

2
α

)
with probability 1− w

w = K0 exp (− |d|K1) , wm = exp (− |d|K2)

µc = (1− wm)µb + wm ∗ .5

σ2 = (1− wm)σb + wm ∗ .1

where K0 is a parameter between 0 and 1 that controls the maximum weight on the auxiliary

normal and K1 > 0 is a parameter controlling the speed with which the weight on the auxili-

ary normal goes to zero as the MCMC algorithm gets further from the threshold region. The

parameters µb > 0 and σb > 0 control the position and shape of the auxiliary normal. These,

in turn, depend on the parameter K2 > 0 that makes sure that as the current alpha approaches

the threshold of the determinacy region, the location and shape of the auxiliary distribution are

adjusted accordingly. The parameter σα controls the variance for the typical normal proposal

distribution centered on the current value of the parameter. Note that the typical Metropolis-

Hastings algorithm would have w = 0 implying that the proposal distribution does not vary in

response to the distance from the boundary of the determinacy region.

Figure 3 presents the proposal distribution for different values of the current αn. To facilitate the

interpretation of the graphs, the top panel plots the proposal distribution for a series of values

implying determinacy, while the lower panel considers a series of values implying indeterminacy.11

When αn is far from the threshold separating the two regions (dotted black line), the proposal

distribution is symmetric. As the current αn becomes closer to 1, the weight on the auxiliary

normal increases and more and more mass is assigned to drawing a value of α that implies a

jump between the two regions. Furthermore, as the the current αn gets closer to 1, the mean of

11We use these hyperparameters K0 = .5, K1 = 2, K2 = 10, µb = .01, σb = .01.
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Figure 3: Proposal distribution for different values of α. The proposal distribution is chosen to
facilitate crossing the determinacy threshold and is obtained with a mixture of normals. The
upper (lower) panel assumes that α is currently above (below) the threshold of the determinacy
region.

the auxiliary normal distribution moves further from the determinacy threshold.

To understand how the algorithm helps in crossing the determinacy threshold, we estimate the

model of Lubik and Schorfheide (2004) for the post-1982 period using the modified Metropolis

algorithm involving the parameter α and the traditional algorithm that only involves the model

parameters and a symmetric proposal distribution. We start the two algorithms 1,000 times

by making a draw from the posterior mode. For each iteration, we count the number of draws

necessary for the parameters to cross the determinacy threshold for the first time. We stop when

the algorithm has reached 100,000 iterations.

Figure 4 reports the distribution for the number of draws necessary to cross the determinacy

threshold for the first time in the two cases. The blue/dark colored bars correspond to the

algorithm implemented by drawing values for the auxiliary parameter α and then using the value

of α to obtain the corresponding value of ψ1. Instead, the yellow/light colored bars correspond

to the traditional algorithm that makes draws for the original parameter space. The distribution

is truncated at 100,000 draws. From the graph, it is clear that the modified algorithm greatly

facilitates crossing the determinacy region. The median value for the number of draws necessary

to cross the determinacy region is only 16, 555 for the modified algorithm. Instead, for the

traditional algorithm in 74, 2% of the cases the parameters have not crossed the determinacy

threshold after 100, 000 iterations.

Finally, we also verify that the modified MCMC algorithm is able to repeatedly jump back and
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Figure 4: The figure reports the distribution for the number of draws necessary to cross the
determinacy threshold for the first time when using a Metropolis-Hastings algorithm to estimate
the model of Lubik and Schorfheide (2004). Two cases are considered. In the first case (blue/dark
colored bars), the algorithm is implemented by drawing values for the auxiliary parameter α. The
value of α is then used to obtain the corresponding value of ψπ. In the second case (yellow/light
colored bars), the algorithm is implemented by drawing directly the parameters of the model.
The distribution is truncated at 100,000 draws.

forth between the two regions of the parameter space. We then make 2, 100, 000 draws from the

posterior using the modified algorithm. We find that the algorithm transitions a total of 34 times

between the two regions. The posterior probability of being under determinacy, computed as

the fraction of draws for which α > 1, is 98.9%. Therefore, the algorithm is able to explore the

entire area of the parameter space despite the fact that the determinacy region is overwhelmingly

favored by the data.

When conducting the same exercise for the pre-1979 period, we found that the algorithm was able

to quickly move to the indeterminacy region independently of the starting point. However, once

the algorithm had reached such region, it was not able to leave it because of a large discontinuity

in the likelihood. This result is important to highlight that while our approach can facilitate the

transition across regions, it cannot overcome the fact that for some models and some data samples

the boundary of the determinacy regions might imply a large discontinuity in the posterior. In

this case, jumping between the two regions becomes extremely unlikely, even when a clever

proposal distribution is used. In these cases, more recent methods, such as the ones described

in Herbst and Schorfheide (2015), can be used to make sure that the entire parameter space is

explored. However, for the example considered in this paper, it is worth emphasizing that the

conclusions of the analysis are unlikely to change because the lack of jumps between the two

31



regions reflects the fact that the data strongly favor indeterminacy.

5 Monetary Policy and Asset Bubbles

In this section, we implement the proposed methodology to estimate the small-scale NK model

of Galí (2017) using Bayesian techniques. The model extends a conventional NK model to allow

for the existence of rational expectations equilibria with asset price bubbles. Interestingly, the

model displays up to two degrees of indeterminacy for realistic parameter values.

We estimate the model using U.S. data over the period 1982:Q4 until 2007:Q3, and we consider

the case that the U.S. monetary policy aimed at stabilizing the inflation rate and leaning against

the bubble. We find that the strength of such responses was not enough to guarantee a stabil-

ization of the U.S. economy and to avoid that unexpected changes in expectations could drive

U.S. business cycles. In particular, we show that the model specification that provides the best

fit to the data is characterized by two degrees of indeterminacy.12

5.1 The Model

The model of Galí (2017) is described by the following equations. First, equation (52) represents

a dynamic IS curve

yt = ΦEt (yt+1)−Ψ (it − Et (πt+1)) + Θqt, (52)

where the variables are expressed in deviations from a balanced growth path (henceforth BGP),

and the parameters {Φ,Ψ,Θ} are function of the structural parameters of the model.13 The

term qt denotes the size of an aggregate bubble in the economy (normalized by trend output)

relative to its value along the BGP.

The aggregate bubble plays the role of demand shifter and is defined as

qt = bt + uqt ,

where bt denotes the aggregate value in period t of bubble assets that were already available for

12 In line with our theoretical results, we show that, given the degree of indeterminacy, the estimation delivers
the same marginal data densities regardless of which forecast error we include in our representation since there
exists a unique mapping among them.
13 In particular, Φ ≡ ΛΓv

β
∈ (0, 1], Ψ ≡ ΥΦ

(
1 + vγ(1−Φ)

Φ(1−βγ)

)
, Υ ≡ 1−βγ

1−ΛΓvγ
∈ (0, 1] and Θ ≡ (1−βγ)(1−vγ)

βγ
. The

parameters are function of the following structural parameters of the model: i) γ, the constant probability of each
individual in the OLG model to survive to the next period; ii) v, the probability of each individual to be employed
in the next period; iii) β, the discount factor of each individual; iv) Λ ≡ 1/(1 + r), the steady state stochastic
discount factor for one-period ahead payoffs derived from a portfolio of securites; v) Γ ≡ (1 + g), the gross rate of
productivity growth.

32



trade in period t− 1, and uqt is the value of a new bubble at time t. We assume that u
q
t follows

an exogenous autoregressive process of the form

uqt = ρqu
q
t−1 + εqt , εqt

iid∼ N(0, σ2
q).

Equation (53) defines the evolution of the value of the asset bubble qt as

qt = ΛΓEt (bt+1)− q (it − Et (πt+1)) , (53)

where q ≡ γ(β−ΛΓv)
(1−βγ)(1−ΛΓvγ) represents the steady state bubble-to-output ratio, Λ ≡ 1/(1 + r) is

the steady state stochastic discount factor for one-period ahead payoffs derived from a portfolio

of securities and Γ ≡ (1 + g) is the gross rate of productivity growth. To guarantee that newly

created bubbles along the BGP are non-negative, the model requires that ΛΓ = 1+g
1+r ≥ 1.

Equivalently, it must hold that r ≤ g on a BGP characterized by the creation of (non-negative)

new asset bubbles. Equation (53) shows how "optimistic" expectations about the future value

of the bubble lead to a higher price for those assets today.

The model is then closed by the following NK Phillips curve

πt = ΛΓvγEt (πt+1) + κyt + ust , (54)

where ust = ρsu
s
t−1+εst and εst

iid∼ N(0, σ2
s).

14 Finally, the conduct of monetary policy is described

by an interest rate rule of the form,

it = ρiit−1 + (1− ρi)
(
φππt + φqqt

)
+ εit, (55)

according to which monetary policy that displays a certain degree of interest rate inertia, and

aims not only at stabilizing inflation, but also at leaning against the bubble.15 The rational

expectation forecast errors are defined as

ηy,t ≡ yt − Et−1 [yt] , ηπ,t ≡ πt − Et−1 [πt] , ηb,t ≡ bt − Et−1 [bt] . (56)

Equations (52)∼(56) describe the equilibrium dynamics of the model economy around a given

BGP. We define the vector of endogenous variables as Xt ≡ (yt, πt, bt, it, qt, Et (yt+1) , Et (πt+1) ,

14 In particular, k ≡ (1−θ)(1−ΛΓvγθ)
θ

ρ, where θ represents the Calvo probability that a firm keeps its price
unchanged in any given period and ρ is the elasticity of hours worked.
15We also assume that εit

iid∼ N(0, σ2
i ).
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Et (bt+1) , uqt , u
s
t )
′, and the vectors of fundamental shocks, εt, and non-fundamental errors, ηt, as

εt ≡
(
εqt , ε

s
t , ε

i
t

)′
, ηt ≡

(
ηy,t, ηπ,t, ηb,t

)′
.

The model can therefore be represented as

Γ0(θ)Xt = Γ1(θ)Xt−1 + Ψ(θ)εt + Π(θ)ηt, (57)

where θ represents the vector of structural parameters of the model. Galí (2017) shows that

for realistic parameter values, the model is characterized by up to two degrees of indeterminacy.

Therefore, the proposed methodology augments the representation of the model in (57) with two

autoregressive processes

ω1,t =

(
1

α1

)
ω1,t−1 + ν1,t − η1,t, (58)

ω2,t =

(
1

α2

)
ω2,t−1 + ν2,t − η2,t, (59)

where {η1,t, η2,t} could be any combination consisting of two of the three forecast errors defined
by the vector ηt ≡

(
ηy,t, ηπ,t, ηb,t

)′. Hence, we define a new vector of endogenous variables

X̂t ≡ (Xt, ω1,t, ω2,t)
′ and a newly defined vector of exogenous shocks as ε̂t ≡ (εt, ν1,t, ν2,t)

′. The

system in (57), (58) and (59) can then be written as

Γ̂0X̂t = Γ̂1X̂t−1 + Ψ̂ε̂t + Π̂ηt.

5.2 Estimation

We estimate the model to match U.S. data over the period 1982:Q4 until 2007:Q3. We consider a

subset of three macroeconomic quarterly time series used in Smets and Wouters (2007) to match

the number of exogenous shocks in the model. In particular, we use the growth rate in real GDP,

the inflation rate measured by the GDP deflator and the Federal Funds rate. We implement

Bayesian techniques, and the measurement equations that relate the macroeconomic data to the

endogenous variables of the model are defined asdlGDPtdlPt

FFRt

 =

 gπ∗
i∗

+

yt − yt−1

πt

it

 ,
where dl denotes the percentage change measured as log difference.
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We follow Galí (2017) and set the discount factor of each individual, β, to 0.998. We estimate the

remaining structural parameters of the model using Bayesian techniques. We report the prior

distributions for the parameters in Table 2. As mentioned when studying equation (53) for the

evolution of the value of the asset bubble qt, the model requires that the real interest rate, r,

and the growth rate of output, g, satisfy r ≤ g to ensure that newly created bubbles along the

BGP are non-negative. To guarantee that this inequality holds for each draw of the Metropolis-

Hastings algorithm, we express the real interest rate, r, as r = λg, where λ ∈ (0, 1). We then set

the prior for the quarterly growth rate of output, g, as a gamma distribution centered at 0.45,

and the prior for λ as a beta distribution with mean 0.8. These priors imply that the annualized

growth rate of output is 1.6% and the annualized real interest rate is approximately 1.3% over

the considered period.

We center the prior for the employment ratio, α, to 0.6. Following the calibration in Galí (2017),

the prior distribution for the probability that an individual survives to the next period, γ, is

centered at 0.996 . The prior for the slope of the New Keynesian Phillips Curve, κ , is set at

0.04, a value chosen for the calibration in Galí (2017) and consistent with an average duration of

individual prices of 4 quarters. The parameter describing the response of the monetary authority

to changes in inflation, φπ, follows a gamma distribution with mean 1 and standard error 0.4.

The response to deviations of the bubble relative to its value along the BGP follows a gamma

distribution with mean 0.3 and standard error 0.15. The parameter which governs the degree of

interest rate inertia, ρi, follows a beta distribution centered at 0.7.

The priors on the stochastic processes that define the fundamental shocks are inverse gamma

distributions centered at 0.3 with a standard deviation of 0.15. Finally, when we estimate

the model under indeterminacy, we specify uniform prior distributions for both the standard

deviations of the non-fundamental shocks {σνl} where l = {π, y, b}, and their correlations with
the exogenous shocks of the model {ϕνl,j} where j = {i, q, s}.

We estimate the model in each region of the parameter space: Determinacy, one degree of

indeterminacy and two degrees of indeterminacy. When the model is indeterminate, we run

the estimation for the different combinations consisting of one or two of the forecast errors

defined by the vector ηt ≡
(
ηy,t, ηπ,t, ηb,t

)′ depending on the degree of indeterminacy. In line
with our theoretical results, we show that, given the degree of indeterminacy, the estimation

delivers the same marginal data densities regardless of which forecast error(s) we include in our

representation. In Appendix C, we also show that the posterior distributions for the model

parameters are equivalent up to a transformation of the correlations between the exogenous

shocks and the sunspot disturbances considered in each specification.16

16 In Appendix B, we show the analytical equivalence among the different representations applying our method-
ology to a bivariate model.
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Prior distribution for model parameters
Name Density Mean Std. Dev.
g Gamma 0.45 0.04
λ Beta 0.80 0.10
α Beta 0.60 0.10

100(γ−1 − 1) Gamma 0.4 0.10
κ Gamma 0.04 0.005
π∗ Gamma 0.9 0.30
i∗ Gamma 1.2 0.30
φπ Gamma 1 0.40
φq Gamma 0.3 0.10
ρi Beta 0.70 0.10
σq Inv. Gamma 0.30 0.15
σs Inv. Gamma 0.30 0.15
σi Inv. Gamma 0.30 0.15
ρq Beta 0.70 0.10
ρs Beta 0.70 0.10
σνi Uniform[0, 10] 5 2.89
ϕνi,j Uniform[−1, 1] 0 0.57

Table 2: The table reports the prior distribution for the model parameters.

Model comparison
Specification Marginal data densities
Indet-2 -72.3
Indet-1 -83.0
Determinacy -158.3

Table 3: The table reports the (log) marginal data densities for each model specification.

Table 3 reports the (log) marginal data density for each of the model specification. We find that

the data favor the specification of the model with two degrees of indeterminacy. We attribute

this result to the stylized nature of the model, and the observation that indeterminate models are

consistent with a richer dynamic and stochastic structure. In future work, it would be valuable

to study whether the findings would carry over in the context of a more realistic, medium-

scale model that could explain the persistence and volatility in the data without recurring to

indeterminate dynamics.

Table 4 reports the mean and 90% probability interval of the posterior distribution of the es-

timated structural parameters. The probability of surviving to the next period, γ, is estimated

to be approximately 99%. The posterior of the slope of the NK Phillips curve is 0.039, which

in this model is consistent with a probability of 24.1% that a firm keeps its price unchanged in
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any given period. The steady-state inflation rate and nominal interest rate are about 0.7% and

1.4% on an quarterly basis. We also find that the strength of the responses of U.S. monetary

policy to stabilize the inflation rate and lean against the bubble was not enough to guarantee a

stabilization of the U.S. economy and to avoid that unexpected changes in expectations could

drive U.S. business cycles.

The mean of the standard error of the bubble component is 0.28, and larger than the standard

deviation of the supply and monetary policy shocks that are estimated to be 0.11 and 0.12,

respectively. The data also provide evidence that the bubble shock is less persistent than the

supply shock.

Finally, we report the standard deviation of the sunspot shocks for the representation that

includes the forecast error for the output gap and the inflation rate. The posterior estimates

show that the standard error related to forecast errors for the output gap is approximately

twice as large as the standard deviation of the sunspot shock associated with the inflation rate.

The data also appear to be informative on the correlations of both sunspot shocks with the

exogenous shocks of the model. A monetary policy shock is negatively correlated with both

sunspot shocks, implying a contemporaneous impact on both inflation and output. A shock due

to a new bubble can be interpreted as a demand shifter, and it has no significant correlation with

unexpected changes in expectations about future inflation and economic activity. A supply shock

has a positive correlation with the sunspot shock associated with inflation, as well as a negative

correlation with the sunspot shock for output. These correlations are crucial to interpret the

impact that each shock has on the model economy as described next.

Figure 5 plots the impulse response of output, inflation and nominal interest rate. We ortho-

gonalize the fundamental shocks using a Cholesky decomposition with the same order as in the

plots {εq, εs, εi}. The last two panels report the impulse response functions in which each sun-
spot shock is the most exogenous shock in the Cholesky decomposition. We plot the impulse

responses to a one-standard-deviation shock. The solid lines represent the posterior means, while

the dashed line correspond to the 90% probability intervals.

Considering the estimated correlations reported in Table 4, we observe that a shock due to

the creation of a new bubble generates no significant effect on the economy in line with the

estimated correlations. A positive supply shock has both inflationary and contractionary effects

on impact. The persistence of the shock on output is then associated to deflationary effects to

which the monetary authority responds by decreasing the nominal interest rate. A monetary

policy tightening generates contractionary and deflationary pressures. The persistence of these

effects on the inflation rate then requires the monetary authority to adopt an accommodative

stance to stabilize the economy.
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Posterior distribution for model parameters
Mean 90% prob. int.

g 0.46 [0.41,0.51]
λ 0.79 [0.64,0.94]
α 0.59 [0.51,0.68]

100(γ−1 − 1) 0.44 [0.30,0.58]
κ 0.039 [0.032,0.047]
π∗ 0.69 [0.38,1.01]
i∗ 1.41 [1.07,1.71]
φπ 0.35 [0.16,0.53]
φq 0.13 [0.06,0.19]
ρi 0.68 [0.54,0.84]
σq 0.28 [0.13,0.43]
σs 0.11 [0.09,0.13]
σi 0.12 [0.09,0.14]
ρq 0.70 [0.54,0.86]
ρs 0.89 [0.84,0.95]
σνπ 0.28 [0.24,0.32]
σνy 0.69 [0.60,0.78]
ϕνπ ,i -0.42 [-0.67,-0.16]
ϕνπ ,q 0.07 [-0.43,0.59]
ϕνπ ,s 0.61 [0.48,0.73]
ϕνy ,i -0.14 [-0.40,0.13]

ϕνy ,q -0.01 [-0.52,0.55]

ϕνy ,s -0.68 [-0.77,-0.59]

Table 4: The table reports the posterior distribution of the model parameters under two degrees
of indeterminacy {νπ, νy}.
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The last two panels show the impulse response to the sunspot shocks that we assume to be

uncorrelated. In this economy, a positive shock to inflation expectations generates self-fulfilling

effects on inflation. Given that in this panel the sunspot shock, ενπ , is assumed to be the most

exogenous, economic activity does not respond on impact, while the increase in the nominal

interest rate triggers a contractionary effect in the medium term. Finally, a positive sunspot

shock to the expectation about future deviations of output from its trend leads to a rise in

economic activity due to its self-fulfilling nature. Given that in the last panel we assume that

the sunspot shock, ενy , is the most exogenous, the inflation rate does not respond on impact,

while it is characterized by a mild deflationary effect in the medium term that leads to a decrease

in the nominal interest rate.

Table 5 reports the variance decompositions for output, inflation and interest rate. The means

and the 90% probability intervals are calculated from the output of the Metropolis-Hastings

algorithm. Because the estimated correlations of the two sunspot shocks with the exogenous

shocks are nonzero, the reported variance decomposition results from the orthogonalization of

the shocks using a Cholesky factorization in which the order of the shocks follows the list in

Table 5. The results are in line with those in the literature and in particular with Lubik and

Schorfheide (2004). The deviations of output from its trend are mostly explained by supply

shocks. In addition to supply-side shocks, fluctuations in inflations are also accounted for by

unexpected changes in monetary policy. Similar conclusions can be drawn for the decomposition

of the nominal interest rate. Interestingly, both sunspot shocks play only a marginal role in

explaining business cycle fluctuations for each of the three endogenous variables.

Variance Decomposition
Output dev. from trend Inflation Interest rate
Mean 90% prob. int. Mean 90% prob. int. Mean 90% prob. int.

εs 0.68 [0.37,0.93] 0.27 [0.01,0.57] 0.27 [0.01,0.56]
εi 0.22 [0.02,0.45] 0.61 [0.37,0.85] 0.60 [0.36,0.85]
εq 0.02 [0.01,0.03] 0.02 [0.01,0.04] 0.02 [0.01,0.04]
ενy 0.07 [0.01,0.14] 0.08 [0.01,0.21] 0.09 [0.01,0.21]
ενπ 0.01 [0.001,0.02] 0.02 [0.01,0.03] 0.02 [0.01,0.03]

Table 5: The table reports the means and 90-percent probability intervals for the uncondi-
tional variance decomposition. Since the estimated correlations with the two sunspot shocks are
nonzero, the decomposition of the orthogonalized shocks via Cholesky decomposition follows the
order of the shocks as listed in the Table.
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Figure 5: The figures plot the posterior means (solid lines) and 90-percent probability intervals
(dashed lines) for the impulse responses of output, inflation and nominal interest rate to a shock
of one standard deviation for each orthogonalized disturbance using a Cholesky decomposition
with the same order as in the plots.
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6 Conclusions

In this paper, we propose a generalized approach to solve and estimate LRE models over the entire

parameter space. Our approach accommodates both cases of determinacy and indeterminacy

and it does not require the researcher to know the analytic conditions describing the region of

determinacy or the degrees of indeterminacy.

When a LRE model is characterized by m degrees of indeterminacy, our approach augments it

by appending m autoregressive processes whose innovations are linear combinations of a subset

of endogenous shocks and a vector of newly defined sunspot shocks. We show that the solution

for the resulting augmented representation embeds both the solution which is obtained under

determinacy using standard solution methods and that delivered by solving the model under

indeterminacy using the approach of Lubik and Schorfheide (2003) and equivalently Farmer

et al. (2015).

We apply our methodology to estimate the small-scale NK model of Galí (2017) using Bayesian

techniques. Galí’s model extends a conventional NK model to allow for the existence of rational

bubbles. An interesting aspect of the model is that it displays up to two degrees of indeterminacy

for realistic parameter values. We estimate the model using U.S. data over the period 1982:Q4

until 2007:Q3. Using Bayesian model comparison we find that the data support the version of

the model with two degrees of indeterminacy, implying that the central bank was not reacting

strongly enough to the bubble component. One caveat to note, however, is that the model of

Galí (2017) is quite stylized, but the results are intriguing and merit further exploration in future

research.
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7 Appendix

7.1 Appendix A

We prove the equivalence between the parametrization of the Lubik-Schorfheide indeterminate

equilibrium θLS ∈ ΘLS and the Bianchi-Nicolò equilibrium parametrized by θBN ∈ ΘBN . In

particular, we show that there is a unique mapping between the linear restrictions imposed in each

of the two methodologies on the forecast errors to guarantee the existence of at least a bounded

solution. As shown in Section 3.2.1, the method by Lubik and Schorfheide (2003) imposes the

following restrictions on the non-fundamental shocks, ηt, as a function of the exogenous shocks,

εt, and the sunspot shocks introduced in their specification, ζt,

ηt
p×1

=

 V1
p×n

N
n×`

+ V2
p×m

M̃
m×`
m×`

 εt
`×1

+ V2
p×m

ζt
m×1

. (60)

Using the methodology proposed in this paper, Section 3.2.2 shows that the restrictions on the

non-fundamental shocks, ηt, as a function of the exogenous shocks, εt, and the sunspot shocks,

vt, are

ηt
p×1

= C1
p×`

εt
`×1

+ C2
p×m

νt
m×1

, (61)

where

C1 ≡ −
[

Π̃−1
n,2Ψ̃2

0

]
and C2 ≡ −

[
Π̃−1
n,2Π̃f,2

−I

]
.

Post-multiplying equation (60) and (61) by ε′t and taking expectations on both sides,

Ωηε
p×l

= V1
p×n

N
n×`

Ωεε
`×l

+ V2
p×m

M̃
m×`

Ωεε
`×l

,

Ωηε
p×l

= C1
p×`

Ωεε
`×l

+ C2
p×m

Ωνε
m×l

Pre-multiplying by V ′2 and equating the equations,

M̃
m×`

Ωεε
`×l

=

(
V ′2
m×p

C1
p×`
− V ′2
m×p

V1
p×n

N
n×`

)
Ωεε
`×l

+ V ′2
m×p

C2
p×m

Ωνε
m×l

. (62)

Using the properties of the vec operator, the following result holds

vec(M̃)
(m×`)×1

= (Ωεε ⊗ Im)−1

(m×`)×(m×`)

[[
Il ⊗

(
V ′2C1 − V ′2V1N

)]
(m×`)×`2

vec (Ωεε)
`2×1

+
(
Il ⊗ V ′2C2

)
(m×`)×(m×`)

vec (Ωνε)
(m×`)×1

]
. (63)
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Equation (63) is the first relevant equation to show the mapping between the representation in

Lubik and Schorfheide (2003) and our representation. For a given variance-covariance matrix

of the exogenous shocks, Ωεε, that is common between the two representations, equation (63)

tells us that the covariance structure, Ωνε, of the sunspot shock in our representation with the

exogenous shocks has a unique mapping to the matrix, M̃ , in Lubik and Schorfheide (2003).

Clearly, equation (62) can also be used to derive the mapping from their representation to our

method.

We now show how to derive the mapping between the variance-covariance matrix, Ωνν , of the

sunspot shocks in our representation to the variance-covariance matrix, Ωζζ , of the sunspot shocks

in Lubik and Schorfheide (2003). Considering again equation (60) and (61), we post-multiply by

ζ ′t and take expectations on both sides,

Ωηζ
p×m

= V2
p×m

Ωζζ
m×m

,

Ωηζ
p×m

= C2
p×m

Ωνζ
m×m

Pre-multiplying both equations by V ′2 and equating them,

Ωζζ
m×m

= Ωζν
m×m

(
V ′2C2

)′
m×m

. (64)

Finally, to obtain an expression for Ωζν , we post-multiply equation (60) and (61) by ν ′t and

taking expectations

Ωην
p×m

=

(
V1
p×n

N
n×`

+ V2
p×m

M̃
m×`

)
Ωεν
`×m

+ V2
p×m

Ωζν
m×m

,

Ωην
p×m

= C1
p×`

Ωεν
`×m

+ C2
p×m

Ωνν
m×m

Pre-multiplying both equations by V ′2 and solving for Ωζν ,

Ωζν
m×m

=

(
V ′2
m×p

C1
p×`
− V ′2
m×p

V1
p×n

N
n×`
− M̃
m×`

)
Ωεν
`×m

+
(
V ′2C2

)
m×m

Ωνν
m×m

. (65)

Post-multiplying (65) by (V ′2C2)′

m×m
and using (64), then

Ωζζ
m×m

=

(
V ′2
m×p

C1
p×`
− V ′2
m×p

V1
p×n

N
n×`
− M̃
m×`

)
Ωεν
`×m

(
V ′2C2

)′
m×m

+
(
V ′2C2

)
m×m

Ωνν
m×m

(
V ′2C2

)′
m×m

. (66)
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Therefore, equation (66) defines the mapping between the variance-covariance matrix, Ωνν , of

the sunspot shocks in our representation to the variance-covariance matrix, Ωζζ , of the sunspot

shocks in Lubik and Schorfheide (2003). Together with equation (63), we show that this equation

defines the one-to-one mapping between the parametrization in Lubik and Schorfheide {Θ,ΘLS}
and the parametrization in Bianchi-Nicolò {Θ,ΘBN}.

7.2 Appendix B

In this Appendix, we provide an analytical example to show the equivalence between the solutions

for an indeterminate LRE model using two alternative methodologies: Lubik and Schorfheide

(2003) and our proposed method. In particular, we consider the following simple model

yt =
1

θy
Et(yt+1) +

1

θy
Et(xt+1) + εt (67)

xt =
1

θx
Et(xt+1) (68)

where εt
iid∼ N(0, σ2

ε) and the corresponding forecast errors are denoted as

ηy,t ≡ yt − Et−1(yt) (69)

ηx,t ≡ xt − Et−1(xt) (70)

7.2.1 Lubik and Schorfheide (2003)

The LRE model in (67)∼ (70) can be written in the following matrix form

Γ0St = Γ1St−1 + Ψεt + Πηt, (71)

where St ≡ (yt, xt, Et(yt+1), Et(xt+1))′ and ηt ≡ (ηy,t, ηx,t)
′.

As the matrix Γ0 is non-singular, the LRE model in (71) can be written as

St = Γ∗1St−1 + Ψ∗εt + Π∗ηt, (72)

where

Γ∗1 ≡ Γ−1
0 Γ1 =

[
04×2 A4×2

]
, Π∗ ≡ Γ−1

0 Π = A4×2
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Ψ∗ ≡ Γ−1
0 Ψ =


0

0

−θx
0

 , A4×2 =


1 0

0 1

θy −θx
0 θx


Note that equation (72) corresponds to equation (20) in Lubik and Schorfheide (2004). We now

show how to solve the model and obtain equation (26) in Lubik and Schorfheide (2004).

Applying the Jordan decomposition, the matrix Γ∗1 can be decomposed as Γ∗1 ≡ JΛJ−1, where

the elements of the diagonal matrix Λ denote the roots of the system

Λ ≡


0 0 0 0

0 0 0 0

0 0 θx 0

0 0 0 θy

 =

[
Λ11 0

0 θy

]
.

Assuming without loss of generality that |θx| ≤ 1 and |θy| > 1, the system in (72) is indetermin-

ate because the number of expectational variables, {Et(yt+1), Et(xt+1)}, exceeds the number of
explosive roots, θy. Defining the vector wt ≡ J−1St, the model can be represented as

wt ≡
[
w1,t

w2,t

]
=

[
Λ11 0

0 θy

][
w1,t−1

w2,t−1

]
+

[
Ψ̃1

Ψ̃2

]
εt +

[
Π̃1

Π̃2

]
ηt, (73)

where the first block denotes the stationary block of the system and the second block is unstable.

The adoption of Sims’(2002) code, Gensys, to solve this model is not appropriate as it deals with

determinate models. After having obtained the representation in (73), Gensys would construct

a matrix Φ such that premultiplying the system by a matrix [I −Φ] would eliminate the effect

of non-fundamental shocks. Equivalently, the matrix has to satisfy the condition

[I − Φ]

[
Π̃1

Π̃2

]
= Π̃1 − ΦΠ̃2 = 0. (74)

Under determinacy, the matrix Π̃2 is square and, assuming that it is also non-singular17, it is

possible to solve for Φ = Π̃1

(
Π̃2

)−1
.

The approach in Lubik and Schorfheide (2003) modifies this intuition to account for the inde-

terminacy that characterizes the model in (73). Under indeterminacy, the matrix Π̃2 is a vector

17Note that Gensys obtains the matrix Φ even when the matrix Π̃2 is singular by applying a singular value
decomposition.
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with more columns than rows, implying that it is not possible to obtain a matrix Φ that satisfies

the above condition in (74). Nevertheless, Lubik and Schorfheide (2003) apply a singular value

decomposition (SVD) to the matrix Π̃2 to obtain

Π̃2 ≡ UDV ′ =
[
U.1 U.2

] [D11 0

0 0

][
V ′.1
V ′.2

]
= U.1D11V

′
.1, (75)

where D11 is a diagonal matrix and U and V are orthonormal matrices. In this particular

example, the matrix to decompose is Π̃2 =
[
a b

]
, where a ≡ −θy and b ≡ −θxθy/(θx− θy), and

the resulting SVD is

Π̃2 ≡ UDV ′ = 1
[
d 0

] [a
d

b
d

b
d −a

d

]
, (76)

where d ≡
√
a2 + b2. Lubik and Schorfheide (2003) then proceed by defining the matrix Φ as

Φ = Π̃1

(
V.1d

−1U ′.1
)

=

0 0

0 0

0 θx

[adb
d

]
1

d
=

0 0

0 0

0 θx
b
d2

 ,
and premultiply the system in (73) by the following matrices[

I −Φ

0 1

][
w1,t

w2,t

]
=

[
I −Φ

0 0

][
Λ11 0

0 θy

][
w1,t−1

w2,t−1

]
+

+

[
I −Φ

0 0

][
Ψ̃1

Ψ̃2

]
εt +

[
I −Φ

0 0

][
Π̃1

Π̃2

]
︸ ︷︷ ︸

6=0

ηt, (77)

where the second block represents the constraint that guarantees the boundedness of the solution,

w2,t = 0⇐⇒ Et(yt+1) = − b
a
Et(xt+1). (78)

Importantly, given that the model is indeterminate, the last term in equation (77) differs from

zero and therefore non-fundamental disturbances affect the model dynamics. Solving (77) for

the endogenous variables, St, the system takes the form

St = Γ̃∗1St−1 + Ψ̃∗εt + Π̃∗ηt, (79)
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where

Γ̃∗1 ≡
[
04×2 B4×2

]
, Ψ̃∗ ≡

(a
d

)2


1

b/a

−θx(b/a)2

θxb/a

 ,

Π̃∗ ≡ B4×2 =


(
b2/d2

)
− b
a(1− b2/d2)

−ab/d2 (1− b2/d2)

θx
(
b2/d2

)
−θx ba(1− b2/d2)

−θxab/d2 θx(1− b2/d2)

 .
The last step that Lubik and Schorfheide (2003) implement is to express the forecast errors as a

function of the fundamental shock, εt, and a sunspot shock, ζt, as

ηt = −V.1D−1
11 U

′
.1Ψ̃2εt + V.2

( v
Mεt +Mζζt

)
, (80)

where V ′.2 =
[
b
d −a

d

]
. Combining (79) with (80) and normalizing Mζ = 1, the solution to the

LRE model is18

St = Γ̃∗1St−1 + Ψ̃∗εt + Π̃∗V.2

( v
Mεt + ζt

)
. (81)

This solution can be equivalently written in a form that explicitly includes the boundedness

condition in (78) for which w2,t = 0 and therefore Et(yt+1) = − b
aEt(xt+1). Recalling that

St = (yt, xt, Et(yt+1), Et(xt+1))′, the dynamics of the solution in (81) are now expressed as a

function of only one state variable,

St =


−b/a

1

−θxb/a
θx

Et−1(xt) + Ψ̃∗εt + Π̃∗V.2

( v
Mεt + ζt

)

=


θx

(θy−θx)

1
θ2
x

(θy−θx)

θx

Et−1(xt) +
θ2
y

d2


1
θx

(θx−θy)

− θ3
x

(θx−θy)2

θ2
x

(θx−θy)

 εt +
θy
d


θx

(θy−θx)

1
θ2
x

(θy−θx)

θx


( v
Mεt + ζt

)
, (82)

18Note that the term −Π̃∗
(
V.1D

−1
11 U

′
.1

v
Ψ2

)
εt always equals to zero since

(
Π̃∗V.1

)
= 0 by the properties of the

orthonormal matrix V.
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where d =
√
θ2
y + (θxθy)

2 /(θx − θy)2.

7.2.2 Our proposed methodology

We now provide the derivation of the solution for the LRE model in (71) and reported below in

equation (83) using the methodology proposed in this paper

Γ0St = Γ1St−1 + Ψεt + Πηt. (83)

The methodology consists of appending the following equation to the original LRE model

ωt =
1

α
ωt−1 + νx,t − ηx,t,

where vt denotes a newly defined sunspot shock and without loss of generality α ≡ |θx|. Denoting
the newly defined vector of endogenous variables Ŝt ≡ (St, ωt)

′ = (yt, xt, Et(yt+1), Et(xt+1), ωt)
′,

and the newly defined vector of exogenous shocks ε̂xt ≡ (εt, νx,t)
′, the augmented representation

of the LRE model is

Γ̂0Ŝt = Γ̂1Ŝt−1 + Ψ̂ε̂xt + Π̂ηt. (84)

Pre-multiplying the system in (84) by Γ̂−1
0 , we obtain

Ŝt = Γ̂∗1Ŝt−1 + Ψ̂∗ε̂xt + Π̂∗ηt, (85)

where

Γ̂∗1 ≡

 Γ∗1 04×1

01×4
1
α

 , Ψ̂∗ ≡

Ψ∗ 04×1

0 −1

 , Π̂∗ ≡

 Π∗4×2

0 1

 .
and the matrices {Γ∗1,Ψ∗,Π∗} are the same as those found in (72). Applying the Jordan decom-
position, the matrix Γ̂∗1 can be decomposed as Γ̂∗1 ≡ ĴΛ̂Ĵ−1, where the elements of the diagonal

matrix Λ̂ denote the roots of the system

Λ̂ ≡
[

Λ 0

0 1
α

]
=


0 0 0 0 0

0 0 0 0 0

0 0 θx 0 0

0 0 0 θy 0

0 0 0 0 1
α

 =

[
Λ11 0

0 Λ22

]
.
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Assuming as in the previous section that |θx| ≤ 1 and |θy| > 1, then 1/α = 1/ |θx| > 1 and

the diagonal elements of the matrix Λ22 =

[
θy 0

0 1/α

]
correspond to the explosive roots of the

system. While the original system in (83) is indeterminate, the augmented representation in (84)

is determinate as the number of expectational variables, {Et(yt+1), Et(xt+1)}, equals the number
of explosive roots, {θy, 1/α}. Defining the vector ŵt ≡ Ĵ−1Ŝt, the model can be represented as

ŵt ≡
[
ŵ1,t

ŵ2,t

]
=

[
Λ11 0

0 Λ22

][
ŵ1,t−1

ŵ2,t−1

]
+

[
Ψ̂∗∗1
Ψ̂∗∗2

]
ε̂xt +

[
Π̂∗∗1
Π̂∗∗2,x

]
ηt, (86)

where the first block is stationary. Given that the second block is unstable, the following two

conditions have to be imposed to guarantee the boundedness of the solution. First, the linear

combination of the endogenous variables, ŵ2,t, is set to zero,

ŵ2,t = 0 ⇐⇒
{
Et(yt+1) = − b

aEt(xt+1)

ωt = 0
(87)

Second, the linear combination of fundamental and non-fundamental shocks also has to equal

zero. Therefore, the non-fundamental shocks, ηt, become a function of the augmented vector of

exogenous shocks, ε̂xt ,

ηt = −
(

Π̂∗∗2,x

)−1
Ψ̂∗∗2 ε̂

x
t ⇐⇒ ηt =

[
1 − θx

θx−θy
0 1

][
εt

νx,t

]
(88)

Considering equation (86), it is relevant to point out that the matrix Π̂∗∗2,x differs from the

corresponding matrix for the representation in which we incorporate the forecast error, ηy,t,

defined as Π̂∗∗2,y,

Π̂∗∗2,x ≡
[
θy

θxθy
θx−θy

0 −1

]
Π̂∗∗2,y ≡

[
θy

θxθy
θx−θy

−1 0

]
.

Therefore, when the auxiliary process is written as a function of the non-fundamental shock, ηy,t,

the restriction imposed on ηt to guarantee the boundedness of the solution also differs from the

one found in (88)

ηt = −
(

Π̂∗∗2,y

)−1
Ψ̂∗∗2 ε̂

y
t ⇐⇒ ηt =

[
0 1

θx−θy
θx

− θx−θy
θx

][
εt

νy,t

]
(89)

Importantly, from equations (88) and (89) it is possible to establish a relationship that links the
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two non-fundamental disturbances {νx,t, νy,t} and the exogenous shock εt,

νx,t =
θx − θy
θx

εt −
θx − θy
θx

νy,t. (90)

We show below that equations (87) and (90) are crucial for the equivalence between the aug-

mented representations that include different non-fundamental shocks in the auxiliary processes

that our methodology proposes.

The augmented model in (86) is determinate as the second block has two explosive roots to match

the two expectational variables of the model. It is therefore possible to apply the approach in

Sims’(2002) to construct a matrix Φ̂x such that premultiplying the system by a matrix [I −Φ̂x]

would eliminate the effect of non-fundamental shocks. Equivalently, the matrix has to satisfy

the condition

[I − Φ̂x]

[
Π̂∗∗1
Π̂∗∗2,x

]
= Π̂∗∗1 − Φ̂xΠ̂∗∗2,x = 0. (91)

Importantly, the matrix Π̂∗∗2,x is square under determinacy and, assuming that it is also non-

singular19, it is possible to solve for Φ̂x = Π̂∗∗1

(
Π̂∗∗2,x

)−1
.

To solve the model, the system in (86) is then premultiplied by the following matrices[
I −Φ̂x

0 I

][
ŵ1,t

ŵ2,t

]
=

[
I −Φ̂x

0 0

][
Λ11 0

0 Λ22

][
ŵ1,t−1

ŵ2,t−1

]
+

+

[
I −Φ̂x

0 0

][
Ψ̂∗∗1
Ψ̂∗∗2

]
ε̂xt +

[
I −Φ̂x

0 0

][
Π̂∗∗1
Π̂∗∗2,x

]
︸ ︷︷ ︸

=0

ηt, (92)

where the second block represents the constraint that guarantees the boundedness of the solution,

ŵ2,t = 0. Importantly, the augmented representation is determinate, and the last term of the

system in (92) equals zero. Nevertheless, the non-fundamental disturbance, νx,t, affects the

dynamics of the original model through vector of exogenous shocks, ε̂xt ≡ (εt, νx,t)
′. Solving (91)

for the endogenous variables, Ŝt ≡ (St, ωt)
′ = (yt, xt, Et(yt+1), Et(xt+1), ωt)

′, the system takes

19Note that Gensys obtains the matrix Φ̂ even when the matrix Π̂∗∗2 is singular by applying a singular value
decomposition.
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the form

Ŝt = Γ̂∗∗1 Ŝt−1 + Ψ̂∗∗S ε̂
x
t

=



θx
(θy−θx)

1
θ2
x

(θy−θx)

θx

0


Et−1(xt) +


1

0

0

0

0

 εt +



θx
(θy−θx)

1
θ2
x

(θy−θx)

θx

0


νx,t. (93)

Finally, to rewrite the reduced-form solution for the augmented representation that includes the

non-fundamental shock, ηy,t, in the auxiliary process, we recall equations (87) and (90) that we

report below in equations (94) and (95)

ŵ2,t = 0 ⇐⇒
{
Et(yt+1) = − θx

θx−θyEt(xt+1)

ωt = 0
(94)

νx,t =
θx − θy
θx

εt −
θx − θy
θx

νy,t (95)

Using the above equations, we can rewrite the system in (93) as
yt

xt

Et(yt+1)

Et(xt+1)

 =


1

θy−θx
θx

θx

θy − θx

Et−1(yt) +


0

θx−θy
θx

−θx
θx − θy

 εt +


1

− θx−θy
θx

θx

−(θx − θy)

 νy,t. (96)

7.2.3 Equivalence of methodologies

In this section, we show the equivalence of the representations obtained using the two meth-

odologies. In equation (97) below, we report the solution for the endogenous variables, St =

(yt, xt, Et(yt+1), Et(xt+1))′, using the methodology of Lubik and Schorfheide (2003),


yt

xt

Et(yt+1)

Et(xt+1)

 =


θx

(θy−θx)

1
θ2
x

(θy−θx)

θx

Et−1(xt) +
θ2
y

d2


1
θx

(θx−θy)

− θ3
x

(θx−θy)2

θ2
x

(θx−θy)

 εt +
θy
d


θx

(θy−θx)

1
θ2
x

(θy−θx)

θx


( v
Mεt + ζt

)
, (97)

53



where d =
√
θ2
y + (θxθy)

2 /(θx − θy)2. We now report in equation (98) below the solution using

our methodology when we include the forecast error, ηx,t, in the auxiliary process
20


yt

xt

Et(yt+1)

Et(xt+1)

 =


θx

(θy−θx)

1
θ2
x

(θy−θx)

θx

Et−1(xt) +


1

0

0

0

 εt +


θx

(θy−θx)

1
θ2
x

(θy−θx)

θx

 νx,t. (98)

To show the equivalence between the two representations, we need to recall the restrictions that

each methodology imposed on the forecast errors, ηt, as a function of the exogenous shock, εt ,

and the additional sunspot shock. Following Lubik and Schorfheide (2003), we derived that

ηt = −V.1D−1
11 U

′
.1Ψ̃2εt + V.2

( v
Mεt +Mζζt

)
,

where we know that V ′ =

[
V ′.1
V ′.2

]
=

[
a
d

b
d

b
d −a

d

]
, D11 = d =

√
a2 + b2 , U1 = 1, Ψ̃2 = −a = θy and

b = −θxθy/(θx − θy). Therefore, normalizing Mζ = 1, we obtain

ηt =

[
a
d
b
d

]
a

d
εt +

[
b
d

−a
d

]( v
Mεt + ζt

)

=

{
θ2
y

d2

[
1
θx

(θx−θy)

]
+
θy
d

[
− θx

(θx−θy)

1

]
v
M

}
εt +

θy
d

[
− θx

(θx−θy)

1

]
ζt. (99)

Similarly, from the derivation using our methodology, we know that

ηt = −
(

Π̂∗∗2,x

)−1
Ψ̂∗∗2 ε̂

x
t ⇐⇒ ηt =

[
1 − θx

θx−θy
0 1

][
εt

νx,t

]
(100)

Comparing equations (99) and (100), we also point out that the sunspot shock introduced in

our representation, νx,t, has a clear interpretation: It is always equivalent to the forecast error

that is included in the auxiliary process. On the contrary, the sunspot shock, ζt, in Lubik and

Schorfheide (2003) has a more complex interpretation and the authors provide a formal argument

to consider it as a trigger of belief shocks that lead to a revision of the forecasts.

20Notice that the last equation of the solution in (93) shows that the auxiliary variable is such that ωt = 0
and therefore we report here the solution for the endogeonus variables of interest St. Also, we showed earlier
the equivalence with the representations that includes the forecast error, ηy,t, obtained using the methodology of
Bianchi and Nicolò (2018).
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We then combine equations (99) and (100) to establish the following relationship

νx,t =

[
θ2
y

d2

θx
(θx − θy)

+
θy
d

v
M

]
εt +

θy
d
ζt. (101)

Plugging this relationship in the solution in equation (98) obtained using our methodology, we

derive the solution in (97) derived using the methodology of Lubik and Schorfheide (2004). This

result shows that any parametrization in Lubik and Schorfheide (2004) has a unique mapping to

our representation. In particular, we now consider the parametrization
v
M = M∗(θ) +M , where

M is centered at 0 and M∗(θ) is found by minimizing the distance between the impulse response

functions under determinacy and indeterminacy at the boundary of the determinacy region. We

can therefore write equation (101) as

νx,t = γε(M
∗(θ))εt + γζζt, (102)

where γε(M
∗(θ)) ≡

[
θ2
y

d2
θx

(θx−θy) +
θy
d M

∗(θ)
]
and γζ ≡

θy
d . Given a parametrization {M

∗(θ), σζ}
and the normalization E [εtζt] = 0 in Lubik and Schorfheide (2004), we derive the corresponding

variance and covariance terms of the non-fundamental shock, νx,t, introduced in our approach as

σ2
νx(M∗(θ)) = γ2

ε(M
∗(θ))σ2

ε + γ2
ζσ

2
ζ (103)

σε,νx(M∗(θ)) = γε(M
∗(θ))σ2

ε (104)

The variance-covariance matrix of the shocks ε̂xt = {εt, νx,t}′ can be written as

Ωε̂x(M∗(θ)) ≡
[

σ2
ε σε,νx(M∗(θ))

σε,νx(M∗(θ)) σ2
νx(M∗(θ))

]
. (105)

Implementing a Cholesky decomposition, the shocks ε̂xt = {εt, vxt }′ can be written as

ε̂xt =

[
εt

νx,t

]
= L(M∗(θ))ut ≡

 σε 0

σε,νx (M∗(θ))
σε

√
σ2
νx(M∗(θ))−

(
σε,νx (M∗(θ))

σε

)2

[u1,t

u2,t

]
, (106)

where V ar(ut) = I and E(ut) = 0. Finally, the parametrization in Lubik and Schorfheide (2004)
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can be mapped to the solution we obtained in equation (98) as
yt

xt

Et(yt+1)

Et(xt+1)

 =


θx

(θy−θx)

1
θ2
x

(θy−θx)

θx

Et−1(xt)+


1 θx

(θy−θx)

0 1

0 θ2
x

(θy−θx)

0 θx


 σε 0

σε,νx (M∗(θ))
σε

√
σ2
νx(M∗(θ))−

(
σε,νx (M∗(θ))

σε

)2

[u1,t

u2,t

]
.

(107)
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7.3 Appendix C

Posterior distribution for model parameters (2-degrees of indeterminacy)
{ν1=νπ,ν2 = νy} {ν1=νπ,ν2 = νb} {ν1=νy,ν2 = νb}

Mean 90% prob. int. Mean 90% prob. int. Mean 90% prob. int.
g 0.49 [0.45,0.54] 0.47 [0.42,0.52] 0.46 [0.42,0.51]
λ 0.96 [0.93,0.99] 0.80 [0.65,0.94] 0.80 [0.67,0.94]
α 0.66 [0.60,0.72] 0.60 [0.52,0.69] 0.60 [0.52,0.68]

100(γ−1−1) 0.50 [0.34,0.65] 0.46 [0.31,0.61] 0.45 [0.31,0.59]
κ 0.040 [0.032,0.048] 0.042 [0.034,0.051] 0.039 [0.032,0.047]
π∗ 0.68 [0.36,1.00] 0.70 [0.38,1.01] 0.72 [0.37,1.01]
i∗ 1.43 [1.09,1.75] 1.41 [1.09,1.74] 1.42 [1.08,1.74]
φπ 0.31 [0.14,0.48] 0.33 [0.17,0.50] 0.30 [0.14,0.46]
φq 0.08 [0.04,0.12] 0.10 [0.05,0.15] 0.16 [0.08,0.23]
ρi 0.75 [0.61,0.88] 0.67 [0.51,0.82] 0.62 [0.45,0.79]
σq 0.29 [0.15,0.44] 0.26 [0.13,0.38] 0.51 [0.19,0.85]
σs 0.11 [0.09,0.13] 0.11 [0.09,0.12] 0.11 [0.09,0.12]
σi 0.10 [0.08,0.12] 0.10 [0.09,0.12] 0.11 [0.09,0.13]
ρq 0.94 [0.91,0.97] 0.68 [0.51,0.84] 0.68 [0.54,0.81]
ρs 0.89 [0.83,0.94] 0.90 [0.85,0.94] 0.87 [0.81,0.92]
σν1 0.28 [0.24,0.32] 0.27 [0.23,0.31] 0.70 [0.61,0.78]
σν2 0.69 [0.60,0.78] 2.59 [1.12,4.14] 1.74 [0.73,2.76]
ϕν1,i -0.42 [-0.67,-0.16] -0.27 [-0.55,0.01] 0.08 [-0.15,0.34]
ϕν1,q 0.07 [-0.43,0.59] 0.11 [-0.45,0.67] 0.60 [0.40,0.81]
ϕν1,s 0.61 [0.48,0.73] 0.61 [0.48,0.73] -0.58 [-0.71,-0.44]
ϕν2,i -0.14 [-0.40,0.13] -0.53 [-0.75,-0.31] -0.72 [-0.93,-0.51]
ϕν2,q -0.01 [-0.52,0.55] -0.11 [-0.51,0.27] -0.30 [-0.63,0.03]
ϕν2,s -0.68 [-0.77,-0.59] -0.67 [-0.80,-0.55] -0.39 [-0.63,-0.18]

MDD -72.3 -73.0 -75.1

Table 6: Posterior distributions of the estimated model with two degrees of indeterminacy.
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Posterior distribution for model parameters (1-degree of indeterminacy)
{ν1=νb} {ν2 = νπ} {ν1=νy}

Mean 90% prob. int. Mean 90% prob. int. Mean 90% prob. int.
g 0.49 [0.45,0.54] 0.50 [0.45,0.54] 0.50 [0.45,0.54]
λ 0.96 [0.93,0.99] 0.97 [0.94,0.99] 0.97 [0.94,0.99]
α 0.66 [0.60,0.72] 0.66 [0.60,0.72] 0.67 [0.61,0.73]

100(γ−1−1) 0.50 [0.34,0.65] 0.47 [0.34,0.60] 0.50 [0.34,0.66]
κ 0.040 [0.032,0.048] 0.043 [0.033,0.049] 0.040 [0.032,0.048]
π∗ 0.68 [0.36,1.00] 0.71 [0.39,1.04] 0.70 [0.38,1.00]
i∗ 1.43 [1.09,1.75] 1.44 [1.13,1.77] 1.43 [1.11,1.74]
φπ 0.31 [0.14,0.48] 0.33 [0.14,0.50] 0.30 [0.12,0.45]
φq 0.08 [0.04,0.12] 0.09 [0.04,0.14] 0.10 [0.04,0.16]
ρR 0.75 [0.61,0.88] 0.74 [0.61,0.88] 0.79 [0.66,0.92]
σq 0.29 [0.15,0.44] 0.30 [0.14,0.46] 0.32 [0.14,0.48]
σs 0.11 [0.09,0.13] 0.11 [0.09,0.14] 0.11 [0.09,0.13]
σi 0.10 [0.08,0.12] 0.10 [0.09,0.12] 0.10 [0.08,0.12]
ρq 0.94 [0.91,0.97] 0.93 [0.90,0.97] 0.92 [0.88,0.96]
ρs 0.89 [0.83,0.94] 0.89 [0.84,0.94] 0.89 [0.84,0.94]
σν1 6.11 [3.44,9.38] 0.28 [0.23,0.31] 0.74 [0.63,0.85]
ϕν1,i -0.41 [-0.65,-0.19] -0.47 [-0.81,-0.12] -0.46 [-0.78,-0.10]
ϕν1,q -0.70 [-0.84,-0.56] -0.52 [-0.70,-0.33] 0.01 [-0.27,0.29]
ϕν1,s -0.46 [-0.57,-0.35] 0.46 [0.26,0.64] -0.64 [-0.76,-0.53]

MDD -83.2 -84.2 -83.0

Table 7: Posterior distributions of the estimated model with one degree of indeterminacy.
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Posterior distribution for model parameters (determinacy)
Mean 90% prob. int.

g 0.40 [0.35,0.44]
λ 0.98 [0.97,0.99]
α 0.69 [0.66,0.71]

100(γ−1−1) 0.46 [0.41,0.51]
κ 0.050 [0.042,0.058]
π∗ 0.60 [0.34,0.85]
i∗ 1.38 [1.12,1.65]
φπ 1.58 [1.46,1.74]
φq 0.03 [0.01,0.04]
ρi 0.78 [0.74,0.82]
σq 0.23 [0.13,0.33]
σs 0.08 [0.07,0.09]
σi 0.20 [0.17,0.23]
ρq 0.95 [0.94,0.97]
ρs 0.94 [0.90,0.97]

MDD -158.3

Table 8: Posterior distributions of the estimated model under determinacy.
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